浏览全部资源
扫码关注微信
浙江大学 生命科学研究院,浙江 杭州 310058
韩旭,男,博士生,从事自身炎症性疾病研究,xu_han@zju.edu.cn。
周青,女,博士,教授,博士生导师,从事自身炎症性疾病研究,zhouq2@zju.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2024-08-26,
移动端阅览
韩旭, 周青. 自身炎症性疾病的致病基因概述[J]. 西北大学学报(自然科学版), 2024,54(5):811-821.
HAN Xu, ZHOU Qing. Review of autoinflammatory diseases pathogenic genes[J]. Journal of Northwest University (Natural Science Edition), 2024,54(5):811-821.
韩旭, 周青. 自身炎症性疾病的致病基因概述[J]. 西北大学学报(自然科学版), 2024,54(5):811-821. DOI: 10.16152/j.cnki.xdxbzr.2024-05-004.
HAN Xu, ZHOU Qing. Review of autoinflammatory diseases pathogenic genes[J]. Journal of Northwest University (Natural Science Edition), 2024,54(5):811-821. DOI: 10.16152/j.cnki.xdxbzr.2024-05-004.
自身炎症性疾病(autoinflammatory disease,AIDs)是一类因先天性免疫系统过度激活而引发的疾病,主要表现为全身的炎症反应和多系统多器官的受累。在AIDs中,遗传因素发挥着重要作用。自首个单基因AIDs被发现以来,目前系统性自身炎症性疾病的致病基因已超过50个。随着免疫学和基因组学研究的进展,AIDs的致病基因谱被不断拓展,对AIDs的认识也逐渐加深。从AIDs的致病基因和临床表型出发,总结了AIDs的致病机制,有助于以更全面的视角了解这一类疾病。
Autoinflammatory diseases (AIDs) is a group of inflammatory disease caused by excessive activation of innate immune system
with ubiquitous inflammation and involvement of multiple systems and organs. Genetics plays an important role in the pathogenesis of AIDs. So far
there are more than 50 monogenic AIDs causal genes have been described since the discovery of the first autoinflammatory disease. With the progress of immunological and genomic research
the spectrum of AIDs pathogenic genes was expanded with better interpretation of AIDs. With the introduction to AIDs causal genes and clinical phenotypes
we provide a comprehensive review of the pathogenesis of AIDs to better understand this group of disorders.
自身炎症性疾病生殖系突变体细胞突变单基因疾病
systemic autoinflammatory diseasesgermline variantsomatic variantsmonogenic disease
MEDZHITOV R, JANEWAY C. Innate immunity[J]. New England Journal of Medicine, 2000, 343(5): 338-344.
MASTERS S L, SIMON A, AKSENTIJEVICH I, et al. Horror autoinflammaticus: The molecular pathophysiology of autoinflammatory disease (*)[J]. Annual Review of Immunology, 2009, 27: 621-668.
MCDERMOTT M F, AKSENTIJEVICH I, GALON J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes[J]. Cell, 1999, 97(1): 133-144.
CONSORTIUM F F. A candidate gene for familial Mediterranean fever[J]. Nature Genetics, 1997, 17(1): 25-31.
CONSORTIUM T I F. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever[J]. Cell, 1997, 90(4): 797-807.
PRAS E, AKSENTIJEVICH I, GRUBERG L, et al. Mapping of a gene causing familial Mediterranean fever to the short arm of chromosome 16[J]. The New England Journal of Medicine, 1992, 326(23): 1509-1513.
MANTHIRAM K, ZHOU Q, AKSENTIJEVICH I, et al. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation[J]. Nature Immunology, 2017, 18(8): 832-842.
AKSENTIJEVICH I, SCHNAPPAUF O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases[J]. Nature Reviews Rheumatology, 2021, 17(7): 405-425.
SAVIC S, CASELEY E A, MCDERMOTT M F. Moving towards a systems-based classification of innate immune-mediated diseases[J]. Nature Reviews Rheumatology, 2020, 16(4): 222-237.
MOGHADDAS F, LLAMAS R, DE NARDO D, et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever[J]. Annals of the Rheumatic Diseases, 2017, 76(12): 2085-2094.
XU D C, ZOU C Y, YUAN J Y. Genetic regulation of RIPK1 and necroptosis[J]. Annual Review of Genetics, 2021, 55: 235-263.
YUAN J Y, AMIN P, OFENGEIM D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases[J]. Nature Reviews Neuroscience, 2019, 20(1): 19-33.
ZHANG X H, DOWLING J P, ZHANG J K. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development[J]. Cell Death & Disease, 2019, 10(3): 245.
LALAOUI N, BOYDEN S E, ODA H, et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease[J]. Nature, 2020, 577(7788): 103-108.
TAO P F, SUN J Q, WU Z M, et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1[J]. Nature, 2020, 577(7788): 109-114.
TAPIZ I REULA A J, COCHINO A V, MARTINS A L, et al. Characterization of novel pathogenic variants leading to caspase-8 cleavage-resistant RIPK1-induced autoinflammatory syndrome[J]. Journal of Clinical Immunology, 2022, 42(7): 1421-1432.
CUCHET-LOURENÇO D, ELETTO D, WU C X, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation[J]. Science, 2018, 361(6404): 810-813.
LI Y, FÜHRER M, BAHRAMI E, et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(3): 970-975.
ZHOU Q, WANG H Y, SCHWARTZ D M, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease[J]. Nature Genetics, 2016, 48(1): 67-73.
YU M P, XU X S, ZHOU Q, et al. Haploinsufficiency of A20 (HA20): Updates on the genetics, phenotype, pathogenesis and treatment[J]. World Journal of Pediatrics, 2020, 16(6): 575-584.
SPAAN A N, NEEHUS A L, LAPLANTINE E, et al. Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin[J]. Science, 2022, 376(6599): eabm6380.
ZHOU Q, YU X M, DEMIRKAYA E, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 10127-10132.
LI M Q, LI L, ASEMOTA S, et al. Reciprocal interplay between OTULIN-LUBAC determines genotoxic and inflammatory NF-κB signal responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(33): e2123097119.
IWAI K. LUBAC-mediated linear ubiquitination: A crucial regulator of immune signaling[J]. Proceedings of the Japan Academy, 2021, 97(3): 120-133.
PELTZER N, DARDING M, MONTINARO A, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis[J]. Nature, 2018, 557(7703): 112-117.
BOISSON B, LAPLANTINE E, PRANDO C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency[J]. Nature Immunology, 2012, 13(12): 1178-1186.
NILSSON J, SCHOSER B, LAFORET P, et al. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1[J]. Annals of Neurology, 2013, 74(6): 914-919.
WANG K, KIM C, BRADFIELD J, et al. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement[J]. Genome Medicine, 2013, 5(7): 67.
SMIT J J, MONTEFERRARIO D, NOORDERMEER S M, et al. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension[J]. The EMBO Journal, 2012, 31(19): 3833-3844.
BOISSON B, LAPLANTINE E, DOBBS K, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia[J]. The Journal of Experimental Medicine, 2015, 212(6): 939-951.
ODA H, BECK D B, KUEHN H S, et al. Second case of HOIP deficiency expands clinical features and defines inflammatory transcriptome regulated by LUBAC[J]. Frontiers in Immunology, 2019, 10: 479.
CROW Y J, STETSON D B. The type I interferonopathies: 10 years on[J]. Nature Reviews Immunology, 2022, 22(8): 471-483.
CROW Y J, LIVINGSTON J H. Aicardi-Goutières syndrome: An important Mendelian mimic of congenital infection[J]. Developmental Medicine & Child Neurology, 2008, 50(6): 410-416.
CROW Y J, MANEL N. Aicardi-Goutières syndrome and the type I interferonopathies[J]. Nature Reviews Immunology, 2015, 15(7): 429-440.
PENG J H, WANG Y S, HAN X, et al. Clinical implications of a new DDX58 pathogenic variant that causes lupus nephritis due to RIG-I hyperactivation[J]. Journal of the American Society of Nephrology, 2023, 34(2): 258-272.
ZHOU Q, YANG D, OMBRELLO A K, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2[J]. New England Journal of Medicine, 2014, 370(10): 911-920.
ELKAN P N, PIERCE S B, SEGEL R, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy[J]. The New England Journal of Medicine, 2014, 370(10): 921-931.
JEE H, HUANG Z P, BAXTER S, et al. Comprehensive analysis of ADA2 genetic variants and estimation of carrier frequency driven by a function-based approach[J]. Journal of Allergy and Clinical Immunology, 2022, 149(1): 379-387.
LEE P Y, AKSENTIJEVICH I, ZHOU Q. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2)[J]. Seminars in Immunopathology, 2022, 44(3): 269-280.
OMBRELLO A K, QIN J, HOFFMANN P M, et al. Treatment strategies for deficiency of adenosine deaminase 2[J]. The New England Journal of Medicine, 2019, 380(16): 1582-1584.
KATAN M, COCKCROFT S. Phospholipase C families: Common themes and versatility in physiology and pathology[J]. Progress in Lipid Research, 2020, 80: 101065.
OMBRELLO M J, REMMERS E F, SUN G P, et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions[J]. The New England Journal of Medicine, 2012, 366(4): 330-338.
ZHOU Q, LEE G S, BRADY J, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency[J]. American Journal of Human Genetics, 2012, 91(4): 713-720.
TAO P F, HAN X, WANG Q T, et al. A gain-of-function variation in PLCG1 causes a new immune dysregulation disease[J]. The Journal of Allergy and Clinical Immunology, 2023, 152(5): 1292-1302.
REDDY S, JIA S, GEOFFREY R, et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus[J]. The New England Journal of Medicine, 2009, 360(23): 2438-2444.
AKSENTIJEVICH I, MASTERS S L, FERGUSON P J, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist[J]. The New England Journal of Medicine, 2009, 360(23): 2426-2437.
MARRAKCHI S, GUIGUE P, RENSHAW B R, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis[J]. The New England Journal of Medicine, 2011, 365(7): 620-628.
ONOUFRIADIS A, SIMPSON M A, PINK A E, et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis[J]. American Journal of Human Genetics, 2011, 89(3): 432-437.
WANG Y S, WANG J, ZHENG W J, et al. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design[J]. Immunity, 2023, 56(7): 1485-1501.e7.
BREHM A, LIU Y, SHEIKH A, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production[J]. The Journal of Clinical Investigation, 2015, 125(11): 4196-4211.
AGARWAL A K, XING C, DEMARTINO G N, et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome[J]. The American Journal of Human Genetics, 2010, 87(6): 866-872.
DE JESUS A A, BREHM A, VANTRIES R, et al. Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4[J]. The Journal of Allergy and Clinical Immunology, 2019, 143(5): 1939-1943.e8.
ISIDOR B, EBSTEIN F, HURST A, et al. Stankiewicz-Isidor syndrome: Expanding the clinical and molecular phenotype[J]. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 2022, 24(1): 179-191.
KANAZAWA N, HEMMI H, KINJO N, et al. Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency[J]. Nature Communications, 2021, 12(1): 6819.
KHALIL R, KENNY C, HILL R S, et al. PSMD12 haploinsufficiency in a neurodevelopmental disorder with autistic features[J]. American Journal of Medical Genetics, 2018, 177(8): 736-745.
KÜRY S, BESNARD T, EBSTEIN F, et al. De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder[J]. American Journal of Human Genetics, 2017, 100(2): 352-363.
NAUD M E, TOSCA L, MARTINOVIC J, et al. Prenatal diagnosis of a 2.5 mb de novo 17q24.1q24.2 deletion encompassing KPNA2 and PSMD12 genes in a fetus with craniofacial dysmorphism, equinovarus feet, and syndactyly[J]. Case Reports in Genetics, 2017, 2017: 7803136.
PALUMBO P, PALUMBO O, DI MURO E, et al. Expanding the clinical and molecular spectrum of PSMD12-related neurodevelopmental syndrome: An additional patient and review[J]. Archives of Clinical and Medical Case Reports, 2019, 3(5): 250-260.
POLI M C, EBSTEIN F, NICHOLAS S K, et al. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome[J]. The American Journal of Human Genetics, 2018, 102(6): 1126-1142.
SARRABAY G, MÉCHIN D, SALHI A, et al. PSMB10, the last immunoproteasome gene missing for PRAAS[J]. The Journal of Allergy and Clinical Immunology, 2020, 145(3): 1015-1017.
YAN K, ZHANG J H, LEE P Y, et al. Haploinsufficiency of PSMD12 causes proteasome dysfunction and subclinical autoinflammation[J]. Arthritis & Rheumatology, 2022, 74(6): 1083-1090.
NAKAGAWA K, GONZALEZ-ROCA E, SOUTO A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes[J]. Annals of the Rheumatic Diseases, 2015, 74(3): 603-610.
SAITO M, FUJISAWA A, NISHIKOMORI R, et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome[J]. Arthritis & Rheumatism, 2005, 52(11): 3579-3585.
ZHOU Q, AKSENTIJEVICH I, WOOD G M, et al. Brief report: Cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation[J]. Arthritis & Rheumatology, 2015, 67(9): 2482-2486.
WANG J, YE Q, ZHENG W J, et al. Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease[J]. Annals of the Rheumatic Diseases, 2022, 81(8): 1173-1178.
KONTZIAS A, ZARABI S K, CALABRESE C, et al. Somatic mosaicism in adult-onset TNF receptor-associated periodic syndrome (TRAPS)[J]. Molecular Genetics & Genomic Medicine, 2019, 7(8): e791.
DE INOCENCIO J, MENSA-VILARO A, TEJADA-PALACIOS P, et al. Somatic NOD2 mosaicism in Blau syndrome[J]. The Journal of Allergy and Clinical Immunology, 2015, 136(2): 484-487.
MENSA-VILARO A, TARNG CHAM W, TANG S P, et al. Brief report: First identification of intrafamilial recurrence of blau syndrome due to gonosomal NOD2 mosaicism[J]. Arthritis & Rheumatology, 2016, 68(4): 1039-1044.
LIU Y, JESUS A A, MARRERO B, et al. Activated STING in a vascular and pulmonary syndrome[J]. The New England Journal of Medicine, 2014, 371(6): 507-518.
ALURI J, BACH A, KAVIANY S, et al. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function[J]. Blood, 2021, 137(18): 2450-2462.
KUBO A, SASAKI T, SUZUKI H, et al. Clonal expansion of second-hit cells with somatic recombinations or C>T transitions form porokeratosis in MVD or MVK mutant heterozygotes[J]. Journal of Investigative Dermatology, 2019, 139(12): 2458-2466.
BECK D B, FERRADA M A, SIKORA K A, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease[J]. The New England Journal of Medicine, 2020, 383(27): 2628-2638.
HSIEH E W Y, BOLZE A, HERNANDEZ J D. Inborn errors of immunity illuminate mechanisms of human immunology and pave the road to precision medicine[J]. Immunological Reviews, 2024, 322(1): 5-14.
DEMIR D D, ASNAASHARI K, REZAEI N, et al. Management of inborn errors of immunity in the genomic era[J]. Turkish Archives of Pediatrics, 2022, 57(2): 132-145.
NIGROVIC P A, LEE P Y, HOFFMAN H M. Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach[J]. Journal of Allergy and Clinical Immunology, 2020, 146(5): 925-937.
SIGNA S, DELL’ORSO G, GATTORNO M, et al. Hematopoietic stem cell transplantation in systemic autoinflammatory diseases: The first one hundred transplanted patients[J]. Expert Review of Clinical Immunology, 2022, 18(7): 667-689.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构