浏览全部资源
扫码关注微信
西北大学 生命科学学院/西部资源生物与现代生物技术教育部重点实验室,陕西 西安 710069
赵鹏,男,博士,教授,博士生导师,从事植物分子生态学和基因组学研究,pengzhao@nwu.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2024-08-01,
移动端阅览
赵鹏. 胡桃属植物演化历史和基因组学研究进展[J]. 西北大学学报(自然科学版), 2024,54(5):785-810.
ZHAO Peng. A review of research progress on evolutionary history and genomics in
赵鹏. 胡桃属植物演化历史和基因组学研究进展[J]. 西北大学学报(自然科学版), 2024,54(5):785-810. DOI: 10.16152/j.cnki.xdxbzr.2024-05-003.
ZHAO Peng. A review of research progress on evolutionary history and genomics in
胡桃属约有22个物种,为第三纪孑遗植物,全球范围均有分布。该属植物种质资源丰富,具有重要的食用、材用、生态、经济、药用价值。其中,胡桃栽培历史悠久。综述胡桃属植物演化历史和基因组学方面的研究进展,从胡桃属植物物种形成、系统发育、生物地理和基因组学几个方面进行了阐述。对该属植物遗传多样性和驯化历史方面的研究前景进行展望。随着测序和分子生物技术的迅速发展,基因组学、转录组学、代谢组学、重测序、DNA甲基化、细胞器基因组、全基因组基因关联分析和其他组学技术将成为胡桃属植物演化历史、组学和育种的有利工具。
The genus
Juglans
(walnut) consists of about 22 species
which are relic of the Tertiary period
with a widely global distribution. This genus is rich in germplasm resources and has significant value for food
timber
ecology
economy
and medicine. Persia
n walnut (
Juglans regia
L.) is the most important with a long history of cultivation. In this article
the evolutionary history and progress in genomic research of walnuts were reviewed. The speciation
phylogeny
biogeography
and genomics were discussed in genus
Juglans
. The prospects for research on the genetic diversity and domestication history of these plants are also discussed. With the rapid development of molecular biological technology and the next generation sequencing techniques
the genomics
transcriptomics
metabolomics
whole genome resequencing
DNA methylation sequencing
organelle genomes
genome-wide association studies
and other omics would be useful tools in studying the evolutionary history
genomics
and breeding of
Juglans
.
胡桃属演化历史分子系统发育基因组学生物地理驯化
Juglansevolutionary historymolecular phylogeneticgenomicsbiogeographydomestication
ARADHYA M K, POTTER D, GAO F Y, et al. Molecular phylogeny of Juglans (Juglandaceae): A biogeographic perspective[J]. Tree Genetics & Genomes, 2007, 3(4): 363378.
ZHAO P, ZHOU H J, POTTER D, et al. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS) [J]. Molecular Phylogenetics and Evolution, 2018, 126: 250-265.
FENG X J, ZHOU H J, ZULFIQAR S, et al. The phytogeographic history of common walnut in China[J]. Frontiers in Plant Science, 2018, 9: 1399.
MANNING W E. The classification within the Juglandaceae[J]. Annals of the Missouri Botanical Garden, 1978, 65(4): 1058-1087.
MANOS P S, STONE D E. Evolution, phylogeny, and systematics of the Juglandaceae[J]. Annals of the Missouri Botanical Garden, 2001, 88(2): 231-269.
RORABAUGH J M. English and black walnut phenolic antioxidant activity in vitro and following human nut consumption [J]. Food and Nutrition Sciences, 2011, 2(3): 193-200.
ELOUAFY Y, EL IDRISSI Z L, EL YADINI A, et al. Variations in antioxidant capacity, oxidative stability, and physicochemical quality parameters of walnut (Juglans regia) oil with roasting and accelerated storage conditions[J]. Molecules, 2022, 27(22): 7693.
GAO P, LIU R J, JIN Q Z, et al. Comparative study of chemical compositions and antioxidant capacities of oils obtained from two species of walnut: Juglans regia and Juglans sigillata[J]. Food Chemistry, 2019, 279: 279-287.
ROS E, MATAIX J. Fatty acid composition of nuts: Implications for cardiovascular health[J]. The British Journal of Nutrition, 2006, 96(S2): S29-S35.
TORABIAN S, HADDAD E, CORDERO-MACINTYRE Z, et al. Long-term walnut supplementation without dietary advice induces favorable serum lipid changes in free-living individuals[J]. European Journal of Clinical Nutrition, 2010, 64(3): 274-279.
VINSON J A, CAI Y X. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits[J]. Food & Function, 2012, 3(2): 134-140.
奚声珂. 我国胡桃属(Juglans L.)种质资源与核桃(Juglans. regia L.)育种 [J]. 林业科学, 1987, 23(3): 342-350.
XI S K. Gene resources of Juglans and genetic improvement of Juglans regia in China [J]. Scientia Silvae Sinicae, 1987, 23(3): 342-350.
郗荣庭. 中国核桃(Juglans regia L.)起源考证[J]. 河北农业大学学报, 1990, 13(1): 89-94.
XI R T. Textural criticism of walnut (Juglans regia L.) origin in China[J]. Journal of Hebei Agricultural University, 1990, 13(1): 89-94.
路安民, 张志耘. 胡桃目的分化,进化和系统关系[J]. 植物分类学报, 1990, 28(2): 96-102.
LU A M, ZHANG Z Y. The differentiation, evolution and systematic relationship of Juglandales[J]. Acta Phytotaxonomica Sinica, 1990, 28(2): 96-102.
路安民. 论胡桃科植物的地理分布[J]. 植物分类学报, 1982, 20(3): 257-274.
LU A M. On the geographic distribution of the Juglandaceae[J]. Acta Phytotaxonomica Sinica, 1982, 20(3): 257-274.
赵鹏, 周惠娟, 刘占林, 等. 胡桃属植物分子系统发育和生物地理研究进展[J]. 林业科学, 2014, 50(11): 147-157.
ZHAO P, ZHOU H J, LIU Z L, et al. A review of research progress on molecular phylogeny and biogeography in Juglans[J]. Scientia Silvae Sinicae, 2014, 50(11): 147-157.
ZHAO P, ZHAO G F, ZHANG S X, et al. RAPD derived markers for separating Manchurian walnut (Juglans mandshurica) and Japanese walnut (J. ailantifolia) from close congeners [J]. Journal of Systematics and Evolution, 2014, 52(1): 101-111.
ZHAO P, WOESTE K E. DNA markers identify hybrids between butternut (Juglans cinerea L.) and Japanese walnut (Juglans ailantifolia Carr.)[J]. Tree Genetics & Genomes, 2011, 7(3): 511533.
ZHAO P, WOESTE K E, ZHANG S X. Molecular identification and genetic analysis of Juglans resources[M]. Saarbrücken: Lambert Aacdemic Publishing, 2012: 3-20.
ZHAO P, ZHANG S X, WOESTE K. Genotypic data changes family rank for growth and quality traits in a black walnut (Juglans nigra L.) progeny test[J]. New Forests, 2013, 44(3): 357-368.
胡昳恒, 党萌, 张甜, 等. 秦岭地区核桃自然群体和栽培群体的遗传多样性及其演化关系:基于nrDNA ITS序列分析[J]. 林业科学, 2014, 50(12): 47-55.
HU Y H, DANG M, ZHANG T, et al. Genetic diversity and evolutionary relationship of Juglans regia wild and domesticated populations in Qinling mountains based on nrDNA ITS sequences [J]. Scientia Silvae Sinicae, 2014, 50(12): 47-55.
张甜, 王玛丽, 赵鹏. 基于核基因序列JRD5680的核桃群体遗传多样性和遗传结构研究 [J]. 植物研究, 2016, 36(2): 232-241.
ZHANG T, WANG M L, ZHAO P. Sequence analysis of nuclear DNA JRD5680 for determining genetic diversity and genetic structure analysis of common walnut (Juglans regia L.) [J]. Bulletin of Botanical Research, 2016, 36(2): 232-241.
HU Z, ZHANG T, GAO X X, et al. De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing[J]. Molecular Genetics and Genomics: MGG, 2016, 291(2): 849-862.
BAI W N, LIAO W J, ZHANG D Y. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia[J]. The New Phytologist, 2010, 188(3): 892-901.
POTTER D, GAO F Y, BAGGETT S, et al. Defining the sources of Paradox: DNA sequence markers for North American walnut (Juglans L.) species and hybrids[J]. Scientia Horticulturae, 2002, 94(1/2): 157-170.
POLLEGIONI P, WOESTE K, OLIMPIERI I, et al. Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers[J]. Tree Genetics & Genomes, 2011, 7(4): 707-723.
MALVOLTI M E, FINESCHI S, PIGLIUCCI M. Morphological integration and genetic variability in Juglans regia L.[J]. Journal of Heredity, 1994, 85(5): 389-394.
STANFORD A M, HARDEN R, PARKS C R. Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data[J]. American Journal of Botany, 2000, 87(6): 872-882.
FJELLSTROM R G, PARFITT D E. Phylogenetic analysis and evolution of the genus Juglans (Juglandaceae) as determined from nuclear genome RFLPs [J]. Plant Systematics and Evolution, 1995, 197(1): 19-32.
HU Y H, DANG M, FENG X J, et al. Genetic diversity and population structure in the narrow endemic Chinese walnut Juglans hopeiensis Hu: Implications for conservation[J]. Tree Genetics & Genomes, 2017, 13(4): 91.
HU Y H, WOESTE K E, ZHAO P. Completion of the chloroplast genomes of five Chinese Juglans and their contribution to chloroplast phylogeny[J]. Frontiers in Plant Science, 2017, 7: 1955.
FENG X J, YUAN X Y, SUN Y W, et al. Resources for studies of iron walnut (Juglans sigillata) gene expression, genetic diversity, and evolution[J]. Tree Genetics & Genomes, 2018, 14(4): 51.
MU X Y, SUN M, YANG P F, et al. Unveiling the identity of wenwan walnuts and phylogenetic relationships of Asian Juglans species using restriction site-associated DNA-sequencing[J]. Frontiers in Plant Science, 2017, 8: 1708.
MANCHESTER S R. The fossil history of the Juglandaceae[M]. Saint Louis: Missouri Botanical Garden, 1987: 1-37.
吴燕民, 裴东, 奚声珂, 等. 用RAPD分析麻核桃起源与分类地位[J]. 林业科学, 1999, 35(4): 25-30.
WU Y M, PEI D, XI S K. Analysis of the origin and the taxonomic position of Juglans hopeiensis using RAPF markers [J]. Scientia Silvae Sinicae, 1999, 35(4): 25-30.
DANG M, ZHOU H J, WOESTE K E, et al. Comparative phylogeography of Juglans regia and J. mandshurica combining organellar and nuclear DNA markers to assess genetic diversity and introgression in regions of sympatry[J]. Trees, 2021, 35(6): 1993-2007.
OREL G, MARCHANT A D, MCLEOD J A, et al. Characterization of 11 Juglandaceae genotypes based on morphology, cpDNA, and RAPD[J]. HortScience, 2003, 38(6): 1178-1183.
ROGERS R. Temperate Ecosystems|Juglandaceae[M]//Encyclopedia of Forest Sciences. Amsterdam: Elsevier, 2004: 1427-1430.
J∅RGENSEN T, HAILE J, MÖLLER P, et al. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability[J]. Molecular Ecology, 2012, 21(8): 1989-2003.
JANSSENS S B, KNOX E B, HUYSMANS S, et al. Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: Result of a global climate change[J]. Molecular Phylogenetics and Evolution, 2009, 52(3): 806-824.
GAO J, WANG B S, MAO J F, et al. Demography and speciation history of the homoploid hybrid pine Pinus densataon the Tibetan Plateau[J]. Molecular Ecology, 2012, 21(19): 4811-4827.
QI X S, CHEN C, COMES H P, et al. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae)[J]. New Phytologist, 2012, 196(2): 617-630.
SUN Y W, HOU N, WOESTE K, et al. Population genetic structure and adaptive differentiation of iron walnut Juglans regia subsp. sigillata in southwestern China[J]. Ecology and Evolution, 2019, 9(24): 14154-14166.
ZHANG W P, CAO L, LIN X R, et al. Dead-end hybridization in walnut trees revealed by large-scale genomic sequence data[J]. Molecular Biology and Evolution, 2022, 39(1): msab308.
HU Y H, WOESTE K E, DANG M, et al. The complete chloroplast genome of common walnut (Juglans regia) [J]. Mitochondrial DNA Part B, Resources, 2016, 1(1): 189-190.
ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664.
LIU J Q, SUN Y S, GE X J, et al. Phylogeographic studies of plants in China: Advances in the past and directions in the future[J]. Journal of Systematics and Evolution, 2012, 50(4): 267-275.
QIU Y X, FU C X, COMES H P, et al. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora[J]. Molecular Phylogenetics and Evolution, 2011, 59(1): 225-244.
ZHANG J B, LI R Q, XIANG X G, et al. Integrated fossil and molecular data reveal the biogeographic diversification of the eastern Asian-eastern North American disjunct hickory genus (Carya Nutt.) [J]. PLoS One, 2013, 8(7): e70449.
PEDERSEN M W, GINOLHAC A, ORLANDO L, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa [J]. Quaternary Science Reviews, 2013, 75: 161-168.
LI Y, SMITH T, SVETLANA P, et al. Paleobiogeography of the lotus plant (Nelumbonaceae: Nelumbo): and its bearing on the paleoclimatic changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 284-293.
GENG F, LEI M, ZHANG N, et al. Demographical complexity within walnut species provides insights into the heterogeneity of geological and climatic fluctuations in East Asia[J/OL]. Journal of Systematics and Evolution. (2024-02-28)[2024-05-10]. https://doi.org/10.1111/jse.13061https://doi.org/10.1111/jse.13061.
WEN J. Evolution of eastern Asian-eastern North American biogeographic disjunctions: A few additional issues[J]. International Journal of Plant Sciences, 2001, 162(S6): S117-S122.
MA Z Y, NIE Z L, LIU X Q, et al. Phylogenetic relationships, hybridization events, and drivers of diversification of East Asian wild grapes as revealed by phylogenomic analyses[J]. Journal of Systematics and Evolution, 2023, 61(2): 273-283.
QIAN H, RICKLEFS R E. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America [J]. Journal of Ecology, 2004, 92(2): 253-265.
XIANG Q Y J, ZHANG W H, RICKLEFS R E, et al. Regional differences in rates of plant speciation and molecularevolution: A comparison between eastern Asia and eastern North America [J]. Evolution, 2004, 58(10): 2175-2184.
DONOGHUE M J, SMITH S A. Patterns in the assembly of temperate forests around the Northern Hemisphere[J]. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2004, 359(1450): 1633-1644.
HAMILTON J A, ECKERT C G. Population genetic consequences of geographic disjunction: A prairie plant isolated on Great Lakes alvars[J]. Molecular Ecology, 2007, 16(8): 1649-1660.
ZHOU W B, SHI W, SOLTIS P S, et al. Foliar endophyte diversity in Eastern Asian-Eastern North American disjunct tree species-influences of host identity, environment, phylogeny, and geographic isolation[J]. Frontiers in Plant Science, 2023, 14: 1274746.
CHEN J H, HAO Z D, GUANG X M, et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J]. Nature Plants, 2019, 5(1): 18-25.
COWMAN P F, BELLWOOD D R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers[J]. Proceedings Biological Sciences, 2013, 280(1768): 20131541.
KORALL P, PRYER K M. Global biogeography of scaly tree ferns (Cyatheaceae): Evidence for Gondwanan vicariance and limited transoceanic dispersal[J]. Journal of Biogeography, 2014, 41(2): 402-413.
SAURA S, BODIN Ö, FORTIN M J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks[J]. Journal of Applied Ecology, 2014, 51(1): 171-182.
SANZ M, SCHÈNSWETTER P, VALLÈS J, et al. Southern isolation and northern long-distance dispersal shaped the phylogeography of the widespread, but highly disjunct, European high mountain plant Artemisia eriantha (Asteraceae)[J]. Botanical Journal of the Linnean Society, 2014, 174(2): 214-226.
AVISE J C. Phylogeography: The history and formation of species[M]. Cambridge: Harvard University Press, 2000: 230-292.
OTÁLORA M A G, MARTÍNEZ I, ARAGÓN G, et al. Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern[J]. American Journal of Botany, 2010, 97(2): 216-223.
BIRD C E, FERNANDEZ-SILVA I, SKILLINGS D J, et al. Sympatric speciation in the post “modern synthesis” era of evolutionary biology[J]. Evolutionary Biology, 2012, 39(2): 158180.
RENAUT S, GRASSA C J, YEAMAN S, et al. Genomic islands of divergence are not affected by geography of speciation in sunflowers[J]. Nature Communications, 2013, 4: 1827.
RENAUT S, OWENS G L, RIESEBERG L H. Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers [J]. Molecular Ecology, 2014, 23(2): 311-324.
FITZPATRICK B M, TURELLI M. The geography of mammalian speciation: Mixed signals from phylogenies and range maps[J]. Evolution, 2006, 60(3): 601-615.
KISEL Y, BARRACLOUGH T G. Speciation has a spatial scale that depends on levels of gene flow[J]. The American Naturalist, 2010, 175(3): 316-334.
ZHENG X M, GE S. Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara)[J]. Molecular Ecology, 2010, 19(12): 2439-2454.
BÜSSE S, VON GRUMBKOW P, HUMMEL S, et al. Phylogeographic analysis elucidates the influence of the ice ages on the disjunct distribution of relict dragonflies in Asia[J]. PLoS One, 2012, 7(5): e38132.
GROSSENBACHER D L, VELOZ S D, SEXTON J P. Niche and range size patterns suggest that speciation begins in small, ecologically diverged populations in North American monkeyflowers (Mimulus spp.)[J]. Evolution, 2014, 68(5): 1270-1280.
LI Q Q, KHASBAGAN , ZHANG Z P, et al. Plastid phylogenomics of the tribe potentilleae (Rosaceae)[J]. Molecular Phylogenetics and Evolution, 2024, 190: 107961.
MA Z Y, NIE Z L, REN C, et al. Phylogenomic relationships and character evolution of the grape family (Vitaceae)[J]. Molecular Phylogenetics and Evolution, 2021, 154: 106948.
MA Z Y, WEN J, ICKERT-BOND S M, et al. Phylogenomics, biogeography, and adaptive radiation of grapes[J]. Molecular Phylogenetics and Evolution, 2018, 129: 258-267.
NIE Z L, SUN H, CHEN Z D, et al. Molecular phylogeny and biogeographic diversification of Parthenocissus (Vitaceae) disjunct between Asia and North America[J]. American Journal of Botany, 2010, 97(8): 1342-1353.
WARREN D L, GLOR R E, TURELLI M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution[J]. Evolution, 2008, 62(11): 2868-2883.
EVANS M E K, SMITH S A, FLYNN R S, et al. Climate, niche evolution, and diversification of the ”bird-cage” evening primroses (Oenothera, sections Anogra and Kleinia)[J]. American Naturalist, 2009, 173: 225-240.
DORMANN C F, GRUBER B, WINTER M, et al. Evolution of climate niches in European mammals?[J]. Biology Letters, 2010, 6(2): 229-232.
NAKAZATO T, WARREN D L, MOYLE L C. Ecological and geographic modes of species divergence in wild tomatoes[J]. American Journal of Botany, 2010, 97(4): 680-693.
BROWNSTEIN C D, NEAR T J. Phylogenetics and the Cenozoic radiation of lampreys[J]. Current Biology, 2023, 33(2): 397-404.
BOJKO J, REINKE A W, STENTIFORD G D, et al. Microsporidia: A new taxonomic, evolutionary, and ecological synthesis[J]. Trends in Parasitology, 2022, 38(8): 642-659.
BEATTY G E, PROVAN J. Refugial persistence and postglacial recolonization of North America by the cold-tolerant herbaceous plant Orthilia secunda[J]. Molecular Ecology, 2010, 19(22): 5009-5021.
BEATTY G E, PROVAN J. Phylogeographic analysis of North American populations of the parasitic herbaceous plant Monotropa hypopitys L. reveals a complex history of range expansion from multiple late glacial refugia[J]. Journal of Biogeography, 2011, 38(8): 1585-1599.
BEATTY G E, PROVAN J. Post-glacial dispersal, rather than in situ glacial survival, best explains the disjunct distribution of the Lusitanian plant species Daboecia cantabrica (Ericaceae)[J]. Journal of Biogeography, 2013, 40(2): 335-344.
MORRONE J J. When phylogenetics met biogeography: Willi Hennig, Lars Brundin and the roots of phylogenetic and cladistic biogeography[J]. Cladistics, 2023, 39(1): 58-69.
SKEMA C, JOURDAIN-FIEVET L, DUBUISSON J Y, et al. Out of Madagascar, repeatedly: The phylogenetics and biogeography of Dombeyoideae (Malvaceae s.l.)[J]. Molecular Phylogenetics and Evolution, 2023, 182: 107687.
COWLING R M, LOMBARD A T. Heterogeneity, speciation/extinction history and climate: Explaining regional plant diversity patterns in the Cape Floristic Region[J]. Diversity and Distributions, 2002, 8(3): 163-179.
CARSTENS B C, KNOWLES L L. Shifting distributions and speciation: Species divergence during rapid climate change[J]. Molecular Ecology, 2007, 16(3): 619-627.
HUA X, WIENS J J. How does climate influence speciation?[J]. The American Naturalist, 2013, 182(1): 1-12.
HADID Y, PAVLÍĈEK T, BEILES A, et al. Sympatric incipient speciation of spiny mice Acomys at “Evolution Canyon, ” Israel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(3): 1043-1048.
ALSOS I G, EHRICH D, THUILLER W, et al. Genetic consequences of climate change for northern plants[J]. Proceedings Biological Sciences, 2012, 279(1735): 2042-2051.
WANG W, ORTIZ R C, JACQUES F M B, et al. Menispermaceae and the diversification of tropical rainforests near the Cretaceous—Paleogene boundary [J]. New Phytologist, 2012, 195(2): 470-478.
HAMANN E, BLEVINS C, FRANKS S J, et al. Climate change alters plant—herbivore interactions[J]. New Phytologist, 2021, 229(4): 1894-1910.
STEWART J R, STRINGER C B. Human evolution out of Africa: The role of refugia and climate change[J]. Science, 2012, 335(6074): 1317-1321.
STEWART J R, LISTER A M, BARNES I, et al. Refugia revisited: Individualistic responses of species in space and time[J]. Proceedings Biological Sciences, 2010, 277(1682): 661-671.
HEWITT G M. Quaternary phylogeography: The roots of hybrid zones[J]. Genetica, 2011, 139(5): 617-638.
WANG I J, GLOR R E, LOSOS J B. Quantifying the roles of ecology and geography in spatial genetic divergence[J]. Ecology Letters, 2013, 16(2): 175-182.
DAHAL N, KUMAR S, NOON B R, et al. The role of geography, environment, and genetic divergence on the distribution of pikas in the Himalaya[J]. Ecology and Evolution, 2020, 10(3): 1539-1551.
STEWART J R. LISTER A M. Cryptic northern refugia and the origins of the modern biota[J]. Trends in Ecology & Evolution, 2001, 16(11): 608-613.
TZEDAKIS P C, EMERSON B C, HEWITT G M. Cryptic or mystic? Glacial tree refugia in northern Europe[J]. Trends in Ecology & Evolution, 2013, 28(12): 696-704.
ANGELIS K, ÁLVAREZ-CARRETERO S, DOS REIS M, et al. An evaluation of different partitioning strategies for Bayesian estimation of species divergence times[J]. Systematic Biology, 2018, 67(1): 61-77.
TEJADA J V, ANTOINE P O, MÜNCH P, et al. Bayesian total-evidence dating revisits sloth phylogeny and biogeography: A cautionary tale on morphological clock analyses[J]. Systematic Biology, 2024, 73(1): 125-139.
LINDSEY C R, KNOLL A H, HERRON M D, et al. Fossil-calibrated molecular clock data enable reconstruction of steps leading to differentiated multicellularity and anisogamy in the Volvocine algae[J]. BMC Biology, 2024, 22(1): 79.
JIA D R, ABBOTT R J, LIU T L, et al. Out of the Qinghai-Tibet Plateau: Evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae)[J]. New Phytologist, 2012, 194(4): 1123-1133.
ZHANG G Y, SONG Y T, CHEN N, et al. Chromosome-level genome assembly of Hippophae tibetana provides insights into high-altitude adaptation and flavonoid biosynthesis[J]. BMC Biology, 2024, 22(1): 82.
HOBAN S M, BORKOWSKI D S, BROSI S L, et al. Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline[J]. Molecular Ecology, 2010, 19(22): 4876-4891.
WANG W T, XU B, ZHANG D Y, et al. Phylogeography of postglacial range expansion in Juglans mandshurica (Juglandaceae) reveals no evidence of bottleneck, loss of genetic diversity, or isolation by distance in the leading-edge populations[J]. Molecular Phylogenetics and Evolution, 2016, 102: 255-264.
HUANG W P, SUN H, DENG T, et al. Molecular phylogenetics and biogeography of the eastern Asian-eastern North American disjunct Mitchella and its close relative Damnacanthus (Rubiaceae, Mitchelleae)[J]. Botanical Journal of the Linnean Society, 2013, 171(2): 395-412.
FICHANT T, LEDENT A, COLLART F, et al. Dispersal capacities of pollen, seeds and spores: Insights from comparative analyses of spatial genetic structures in bryophytes and spermatophytes[J]. Frontiers in Plant Science, 2023, 14: 1289240.
OMONDI S F, GITHAE E W, KHASA D P. Long-distance gene flow in Acacia senegal: Hope for disturbed and fragmented populations[J]. Ecology and Evolution, 2023, 13(7): e10292.
LI E Z, WANG Y S, LIU K J, et al. Historical climate change and vicariance events contributed to the intercontinental disjunct distribution pattern of ash species (Fraxinus, Oleaceae)[J]. Communications Biology, 2024, 7(1): 603.
LUO X, ZHOU H J, CAO D, et al. Domestication and selection footprints in Persian walnuts (Juglans regia)[J]. PLoS Genetics, 2022, 18(12): e1010513.
HAN H, WOESTE K E, HU Y H, et al. Genetic diversity and population structure of common walnut (Juglans regia) in China based on EST-SSRs and the nuclear gene phenylalanine ammonia-lyase (PAL)[J]. Tree Genetics & Genomes, 2016, 12(6): 111.
DANG M, YUE M, ZHANG M, et al. Gene introgression among closely related species in sympatric populations: A case study of three walnut (Juglans) species[J]. Forests, 2019, 10(11): 965.
MANNI F, GUÉRARD E, HEYER E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm[J]. Human Biology, 2004, 76(2): 173-190.
DARWIN C. On the origin of species by means of natural selection: Or, the preservation of favoured races in the struggle for life[M]. London: John Murray, 1859: 7-19.
HOSKIN C J, HIGGIE M, MCDONALD K R, et al. Reinforcement drives rapid allopatric speciation[J]. Nature, 2005, 437(7063): 1353-1356.
APRIL J, HANNER R H, DION-CÔTÉ A M, et al. Glacial cycles as an allopatric speciation pump in northeastern American freshwater fishes[J]. Molecular ecology, 2013, 22(2): 409-422.
BECKER F S, ALEXANDER G J, TOLLEY K A. Substrate specialisation drives an unexpectedly diverse radiation in barking geckos (Ptenopus: Gekkonidae)[J]. Molecular Phylogenetics and Evolution, 2024, 197: 108104.
GAVRILETS S. Perspective: Models of speciation: What have we learned in 40 years?[J]. Evolution, 2003, 57(10): 2197-2215.
XIAO L Q, MÖLLER M, ZHU H. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: Incomplete concerted evolution and the origin of pseudogenes[J]. Molecular Phylogenetics and Evolution, 2010, 55(1): 168-177.
DUPIN J, HONG-WA C, GAUDEUL M, et al. Phylogenetics and biogeography of the olive family (Oleaceae)[J]. Annals of Botany, 2024: mcae100.
ABBOTT R, ALBACH D, ANSELL S, et al. Hybridization and speciation[J]. Journal of Evolutionary Biology, 2013, 26(2): 229-246.
PHILLIPSEN I C, KIRK E H, BOGAN M T, et al. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects[J]. Molecular Ecology, 2015, 24(1): 54-69.
BANK C, BÜRGER R, HERMISSON J. The limits to parapatric speciation: Dobzhansky-Muller incompatibilities in a continent-island model[J]. Genetics, 2012, 191(3): 845-863.
DIECKMANN U, DOEBELI M. On the origin of species by sympatric speciation[J]. Nature, 1999, 400(6742): 354-357.
BARLUENGA M, STÖLTING K N, SALZBURGER W, et al. Sympatric speciation in Nicaraguan crater lake cichlid fish[J]. Nature, 2006, 439(7077): 719-723.
NOSIL P. Speciation with gene flow could be common[J]. Molecular Ecology, 2008, 17(9): 21032106.
SCHMID S, BACHMANN SALVY M, GARCIA JIMENEZ A, et al. Gene flow throughout the evolutionary history of a colour polymorphic and generalist clownfish[J]. Molecular Ecology, 2024, 33(14): e17436.
LIU J, NIE Z L, REN C, et al. Phylogenomics of Aralia sect. Aralia (Araliaceae): Signals of hybridization and insights into its species delimitations and intercontinental biogeography[J]. Molecular Phylogenetics and Evolution, 2023, 181: 107727.
BOLTE C E, PHANNARETH T, ZAVALA-PAEZ M, et al. Genomic insights into hybrid zone formation: The role of climate, landscape, and demography in the emergence of a novel hybrid lineage[J]. Molecular Ecology, 2024, 33(14): e17430.
ROSSER N, SEIXAS F, QUESTE LM, et al. Hybrid speciation driven by multilocus introgression of ecological traits[J]. Nature, 2024, 628(8009): 811-817.
WIESE J. Digest: Pelagic habitats promote speciation but constrain morphological evolution[J]. Evolution, 2024: qpae091.
NOSIL P. Ecological speciation[M]. Oxford: Oxford University Press, 2012: 280.
SCHLUTER D. Evidence for ecological speciation and its alternative[J]. Science, 2009, 323(5915): 737-741.
SCHLUTER D, CONTE G L. Genetics and ecological speciation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(S1): 9955-9962.
SOBEL J M, CHEN G F, WATT L R, et al. The biology of speciation[J]. Evolution, 2010, 64(2): 295-315.
MAYA-LASTRA C A, SWEENEY P W, EATON D A R, et al. Caught in the act: Incipient speciation at the southern limit of viburnum in the central Andes[J]. Systematic Biology, 2024: syae023.
LI Y R, FRITSCH P W, ZHAO G G, et al. Population differentiation and dynamics of five pioneer species of Gaultheria from the secondary forests in subtropical China[J]. BMC Plant Biology, 2024, 24(1): 516.
SUN P W, CHANG J T, LUO M X, et al. Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change[J]. BMC Plant Biology, 2024, 24(1): 279.
CIANCHI R, ARDUINO P, MOSCO M C, et al. Evidence of hybrid speciation in the North American primroses Primula suffrutescensP. parryiP. rusbyi and P. angustifolia (Primulaceae)[J]. Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology, 2015, 149(2): 229-234.
ROSSETTO M, ALLEN C B, THURLBY K A G, et al. Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient[J]. BMC Evolutionary Biology, 2012, 12: 149.
SEXTON J P, HANGARTNER S B, HOFFMANN A A. Genetic isolation by environment or distance: Which pattern of gene flow is most common? [J]. Evolution, 2014, 68(1): 1-15.
FRISTOE T S, BLEILEVENS J, KINLOCK N L, et al. Evolutionary imbalance, climate and human history jointly shape the global biogeography of alien plants[J]. Nature Ecology & Evolution, 2023, 7(10): 1633-1644.
BROWN L E, KHAMIS K, WILKES M, et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover[J]. Nature Ecology & Evolution, 2018, 2(2): 325-333.
LI J, ZHENG Z, HUANG K Y, et al. Vegetation changes during the past 40, 000 years in Central China from a long fossil record[J]. Quaternary International, 2013, 310: 221-226.
SMITH T, ROSE K D, GINGERICH P D. Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30): 11223-11227.
STANKOWSKI S. Ecological speciation in an island snail: Evidence for the parallel evolution of a novel ecotype and maintenance by ecologically dependent postzygotic isolation[J]. Molecular Ecology, 2013, 22(10): 2726-2741.
SHAFER A B A, WOLF J B W. Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology[J]. Ecology Letters, 2013, 16(7): 940-950.
RÄSÄNEN K, HENDRY A P. Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification[J]. Ecology Letters, 2008, 11(6): 624-636.
SERVEDIO M R, HERMISSON J, VAN DOORN G S. Hybridization may rarely promote speciation[J]. Journal of Evolutionary Biology, 2013, 26(2): 282-285.
NOSIL P, VINES T H, FUNK D J. Perspective: Reproductive isolation caused by natural selection against immigrants from divergent habitats[J]. Evolution, 2005, 59(4): 705-719.
BOLNICK D I, NOSIL P. Natural selection in populations subject to a migration load[J]. Evolution, 2007, 61(9): 2229-2243.
BRIDLE J R, POLECHOVÁ J, KAWATA M, et al. Why is adaptation prevented at ecological margins? New insights from individual-based simulations[J]. Ecology Letters, 2010, 13(4): 485-494.
KARIMI N, KRIEG C P, SPALINK D, et al. Chromosomal evolution, environmental heterogeneity, and migration drive spatial patterns of species richness in Calochortus(Liliaceae)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(10): e2305228121.
PLATH M, PFENNINGER M, LERP H, et al. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments[J]. Evolution, 2013, 67(9): 2647-2661.
GARROWAY C J, RADERSMA R, SEPIL I, et al. Fine-scale genetic structure in a wild bird population: The role of limited dispersal and environmentally based selection as causal factors[J]. Evolution, 2013, 67(12): 3488-3500.
FRANKHAM R, BALLOU J D, ELDRIDGE M D B, et al. Predicting the probability of outbreeding depression[J]. Conservation Biology, 2011, 25(3): 465-475.
PEKKALA N, KNOTT K E, KOTIAHO J S, et al. The benefits of interpopulation hybridization diminish with increasing divergence of small populations[J]. Journal of Evolutionary Biology, 2012, 25(11): 2181-2183.
SOULARUE J P, KREMER A. Assortative mating and gene flow generate clinal phenological variation in trees[J]. BMC Evolutionary Biology, 2012, 12: 79.
BAI W N, YAN P C, ZHANG B W, et al. Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole-genome sequences[J]. The New Phytologist, 2018, 217(4): 1726-1736.
BAI W N, ZENG Y F, LIAO W J, et al. Flowering phenology and wind-pollination efficacy of heterodichogamous Juglans mandshurica (Juglandaceae)[J]. Annals of Botany, 2006, 98(2): 397-402.
AVNI R, NAVE M, BARAD O, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication[J]. Science, 2017, 357(6346): 93-97.
DIAMOND J. Evolution, consequences and future of plant and animal domestication[J]. Nature, 2002, 418(6898): 700-707.
GAUT B S, SEYMOUR D K, LIU Q P, et al. Demography and its effects on genomic variation in crop domestication[J]. Nature Plants, 2018, 4(8): 512-520.
MEYER R S, DUVAL A E, JENSEN H R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops[J]. The New Phytologist, 2012; 196(1): 29-48.
HUANG X H, HUANG S W, HAN B, et al. The integrated genomics of crop domestication and breeding[J]. Cell, 2022, 185(15): 2828-2839.
CHENG S F, FENG C, WINGEN L U, et al. Harnessing landrace diversity empowers wheat breeding[J]. Nature, 2024, 632: 823-831.
MEYER R S, PURUGGANAN M D. Evolution of crop species: Genetics of domestication and diversification[J]. Nature Reviews Genetics, 2013, 14(12): 840-852.
XIAO J, LIU B, YAO Y Y, et al. Wheat genomic study for genetic improvement of traits in China[J]. Science China Life Sciences, 2022, 65(9): 1718-1775.
HAAS M, SCHREIBER M, MASCHER M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions[J]. Journal of Integrative Plant Biology, 2019, 61(3): 204-225.
FORNASIERO A, WING R A, RONALD P. Rice domestication[J]. Current Biology, 2022, 32(1): R20-R24.
IZAWA T. Reloading DNA history in rice domestication[J]. Plant & Cell Physiology, 2022, 63(11): 1529-1539.
ZHANG J P, JIANG L P, YU L P, et al. Rice’s trajectory from wild to domesticated in East Asia[J]. Science, 2024, 384(6698): 901-906.
YU H, LIN T, MENG X B, et al. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, 184(5): 1156-1170.
STITZER M C, ROSS-IBARRA J. Maize domestication and gene interaction[J]. The New Phytologist, 2018, 220(2): 395-408.
DONG Z B, ALEXANDER M, CHUCK G. Understanding grass domestication through maize mutants[J]. The Trends in Genetics, 2019, 35(2): 118-128.
ABRAHAM-JUÁREZ M J, BARNES A C, ARAGÓN-RAYGOZA A, et al. The arches and spandrels of maize domestication, adaptation, and improvement[J]. Current Opinion in Plant Biology, 2021, 64: 102124.
CHEN Q Y, LI W Y, TAN L B, et al. Harnessing knowledge from maize and rice domestication for new crop breeding[J]. Molecular Plant, 2021, 14(1): 9-26.
ZHU G T, WANG S C, HUANG Z J, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1/2): 249-261.
CONSORTIUM T G. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 2012, 485(7400): 635-641.
CHE G, ZHANG X L. Molecular basis of cucumber fruit domestication[J]. Current Opinion in Plant Biology, 2019, 47: 38-46.
SEDIVY E J, WU F Q, HANZAWA Y. Soybean domestication: The origin, genetic architecture and molecular bases[J]. The New Phytologist, 2017, 214(2): 539-553.
GAO L, GONDA I, SUN H H, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor[J]. Nature Genetics, 2019, 51(6): 1044-1051.
UNVER T, WU Z Y, STERCK L, et al. Genome of wild olive and the evolution of oil biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 144(44): E9413-E9422.
WU J, WANG Y T, XU J B, et al. Diversification and independent domestication of Asian and European pears[J]. Genome Biology, 2018, 19(1): 77.
LI Y, CAO K, ZHU G R, et al. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history[J]. Genome Biology, 2019, 20(1): 36.
BERNARD A, LHEUREUX F, DIRLEWANGER E. Walnut: Past and future of genetic improvement[J]. Tree Genetics & Genomes, 2017, 14(1): 1.
DING Y M, CAO Y, ZHANG W P, et al. Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication[J]. Genome Biology, 2022, 23(1): 145.
MARTÍNEZ-GARCÍA P J, CREPEAU M W, PUIU D, et al. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols[J]. The Plant Journal, 2016, 87(5): 507-532.
CHEN L N, MA Q G, CHEN Y K, et al. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers[J]. Scientia Horticulturae, 2014, 168: 240248.
JI F Y, MA Q G, ZHANG W T, et al. A genome variation map provides insights into the genetics of walnut adaptation and agronomic traits[J]. Genome Biology, 2021, 22(1): 300.
YANG C J, SAMAYOA L F, BRADBURY P J, et al. The genetic architecture of teosinte catalyzed and constrained maize domestication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12): 5643-5652.
HUANG X H, KURATA N, WEI X H, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497-501.
WU J, WANG L F, FU J J, et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline[J]. Nature Genetics, 2020, 52(1): 118-125.
CLARK R M, WAGLER T N, QUIJADA P, et al. A distant upstream enhancer at the maize domestication gene Tb1 has pleiotropic effects on plant and inflorescent architecture[J]. Nature Genetics, 2006, 38(5): 594-597.
WU G A, TEROL J, IBANEZ V, et al. Genomics of the origin and evolution of Citrus[J]. Nature, 2018, 554(7692): 311-316.
WANG L, HE F, HUANG Y, et al. Genome of wild mandarin and domestication history of mandarin[J]. Molecular Plant, 2018, 11(8): 1024-1037.
ZHOU Y F, MASSONNET M, SANJAK J S, et al. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): 11715-11720.
ALLABY R G. Two domestications for grapes[J]. Science, 2023, 379(6635): 880-881.
DIEZ C M, TRUJILLO I, MARTINEZ-URDIROZ N, et al. Olive domestication and diversification in the Mediterranean Basin[J]. The New Phytologist, 2015, 206(1): 436-447.
GAUT B S, DÍEZ C M, MORRELL P L. Genomics and the contrasting dynamics of annual and perennial domestication[J]. Trends in Genetisc, 2015, 31(12): 709-719.
MCCLURE K A, SAWLER J, GARDNER K M, et al. Genomics: A potential panacea for the perennial problem[J]. American Journal of Botany, 2014, 101(10): 1780-1790.
MILLER A J, GROSS B L. From forest to field: Perennial fruit crop domestication[J]. American Journal of Botany, 2011, 98(9): 1389-1414.
HARFOUCHE A, MEILAN R, KIRST M, et al. Accelerating the domestication of forest trees in a changing world[J]. Trends in Plant Science, 2012, 17(2): 64-72.
BAYAZIT S, KAZAN K, GÜLBITTI S, et al. AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay, Turkey[J]. Scientia Horticulturae, 2007, 111(4): 394-398.
ZOHARY D, HOPF M, WEISS E. Domestication of plants in the Old World: The origin and spread of domesticated plants in south-west Asia, Europe, and the Mediterranean Basin[M]. 4th ed. Oxford: Oxford University Press, 2012: 1-68.
ROOR W, KONRAD H, MAMADJANOV D, et al. Population differentiation in common walnut (Juglans regia L.) across major parts of its native range—Insights from molecular and morphometric data[J]. Journal of Heredity, 2017, 108(4): 391-404.
ZHANG B W, XU L L, LI N, et al. Phylogenomics reveals an ancient hybrid origin of the Persian walnut [J]. Molecular Biology and Evolution, 2019, 36(11): 2451-2461.
WANG J T, YE H, ZHOU H J, et al. Genome-wide association analysis of 101 accessions dissects the genetic basis of shell thickness for genetic improvement in Persian walnut (Juglans regia L.)[J]. BMC Plant Biology, 2022, 22(1): 436.
SONG B, NING W D, WEI D, et al. Plant genome resequencing and population genomics: Current status and future prospects[J]. Molecular Plant, 2023, 16(8): 1252-1268.
LONG Q M, CAO S, HUANG G Z, et al. Population comparative genomics discovers gene gain and loss during grapevine domestication[J]. Plant Physiology, 2024, 195(2): 1401-1413.
MARRANO A, BRITTON M, ZAINI P A, et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome[J]. GigaScience, 2020, 9(5): giaa050.
STEVENS K A, WOESTE K, CHAKRABORTY S, et al. Genomic variation among and within six Juglans species[J]. G3: Genes, Genomes, Genetics, 2018, 8(7): 2153-2165.
ZHU T T, WANG L, YOU F M, et al. Sequencing a Juglans regia×J. microcarpa hybrid yields high-quality genome assemblies of parental species[J]. Horticulture Research, 2019, 6: 55.
ZHANG J P, ZHANG W T, JI F Y, et al. A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication[J]. Plant Biotechnology Journal, 2020, 18(9): 1848-1850.
NING D L, WU T, XIAO L J, et al. Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis[J]. GigaScience, 2020, 9(2): giaa006.
WANG Y, YANG Y X, YUAN X L, et al. Draft genome sequence of endophytic fungus Talaromyces purpureogenuss train YAFEF302, isolated from Juglans sigillata[J]. Microbiology Resource Announcements, 2024, 13(1): e0082923.
YAN F, XI R M, SHE R X, et al. Improved de novo chromosome-level genome assembly of the vulnerable walnut tree Juglans mandshurica reveals gene family evolution and possible genome basis of resistance to lesion nematode[J]. Molecular Ecology Resources, 2021, 21(6): 2063-2076.
LI X, CAI K W, ZHANG Q H, et al. The manchurian walnut genome: Insights into juglone and lipid biosynthesis[J]. GigaScience, 2022, 11: giac057.
ZHOU H J, YAN F, HAO F, et al. Pan-genome and transcriptome analyses provide insights into genomic variation and differential gene expression profiles related to disease resistance and fatty acid biosynthesis in eastern black walnut (Juglans nigra)[J]. Horticulture Research, 2023, 10(3): uhad015.
FITZ-GIBBON S, MEAD A, O’DONNELL S, et al. Reference genome of California walnut, Juglans californica, and resemblance with other genomes in the order Fagales[J]. The Journal of Heredity, 2023, 114(5): 570-579.
HAN L Q, LUO X, ZHAO Y, et al. A haplotype-resolved genome provides insight into allele-specific expression in wild walnut (Juglans regia L.)[J]. Scientific Data, 2024, 11(1): 278.
GUZMAN-TORRES C R, TRYBULEC E, LEVASSEUR H, et al. Conserving a threatened North American walnut: A chromosome-scale reference genome for butternut (Juglans cinerea)[J]. G3: Genes, Genomes, Genetics, 2024, 14(2): jkad189.
QU Y Q, SHANG X L, ZENG Z Y, et al. Whole-genome duplication reshaped adaptive evolution in a relict plant species, Cyclocarya paliurus[J]. Genomics, Proteomics & Bioinformatics, 2023, 21(3): 455-469.
QU Y Q, SHANG X L, FANG S Z, et al. Genome assembly of two diploid and one auto-tetraploid Cyclocarya paliurus genomes[J]. Scientific Data, 2023, 10(1): 507.
YU R M, ZHANG N, ZHANG B W, et al. Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus[J]. BMC Biology, 2023, 21(1): 168.
DING Y M, PANG X X, CAO Y, et al. Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes[J]. Nature Communications, 2023, 14(1): 617.
CAO Y, ALMEIDA-SILVA F, ZHANG W P, et al. Genomic insights into adaptation to karst limestone and incipient speciation in East Asian Platycarya spp. (Juglandaceae)[J]. Molecular Biology and Evolution, 2023, 40(6): msad121.
ZHOU H J, ZHANG X D, LIU H Z, et al. Chromosome-level genome assembly of Platycarya strobilacea[J]. Scientific Data, 2024, 11(1): 269.
LIU H Z, ZHOU H T, YE H, et al. Integrated metabolomic and transcriptomic dynamic profiles of endopleura coloration during fruit maturation in three walnut cultivars[J]. BMC Plant Biology, 2024, 24(1): 109.
MA J Y, ZUO D J, YE H, et al. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives J. mandshurica[J]. BMC Plant Biology, 2023, 23(1): 80.
MA J Y, ZUO D J, ZHANG X D, et al. Genome-wide identification analysis of the 4-Coumarate: CoA ligase (4CL) gene family expression profiles in Juglans regia and its wild relatives J. Mandshurica resistance and salt stress[J]. BMC Plant Biology, 2024, 24(1): 211.
LI M D, OU M W, HE X Z, et al. DNA methylation role in subgenome expression dominance of Juglans regia and its wild relative J. mandshurica[J]. Plant Physiology, 2023, 193(2): 1313-1329.
ZHOU H J, MA J Y, LIU H Z, et al. Genome-wide identification of the CBF gene family and ICE transcription factors in walnuts and expression profiles under cold conditions[J]. International Journal of Molecular Science, 2023, 25(1): 25.
CHEN F, CHEN J, WANG Z, et al. Genomics: Cracking the mysteries of walnuts[J]. Jounal of Genetics, 2019, 98(2): 33.
CHEN M J, FAN W J, JI F Y, et al. Genome-wide identification of agronomically important genes in outcrossing crops using OutcrossSeq[J]. Molecular Plant, 2021, 14(4): 556-570.
GUILLAUME C, ISABELLE C, MARC B, et al. Assessing frost damages using dynamic models in walnut trees: Exposure rather than vulnerability controls frost risks[J]. Plant, Cell & Environment, 2018, 41(5): 1008-1021.
SONG J M, GUAN Z L, HU J L, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus[J]. Nature Plants, 2020, 6(1): 34-45.
ZHOU R, DONG Y H, LIU X, et al. JrWRKY21 interacts with JrPTI5L to activate the expression of JrPR5L for resistance to Colletotrichum gloeosporioides in walnut[J]. The Plant Journal, 2022, 111(4): 1152-1166.
ARAB M M, BROWN P J, ABDOLLAHI-ARPANAHI R, et al. Genome-wide association analysis and pathway enrichment provide insights into the genetic basis of photosynthetic responses to drought stress in Persian walnut[J]. Horticulture Research, 2022, 9: uhac124.
ARAB M M, MARRANO A, ABDOLLAHI-ARPANAHI R, et al. Combining phenotype, genotype, and environment to uncover genetic components underlying water use efficiency in Persian walnut[J]. Journal of Experimental Botany, 2020, 71(3): 1107-1127.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构