西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
赵雪,女,从事地质灾害防治等研究,1426442594@qq.com。
谷天峰,男,教授,从事黄土地质灾害等研究,gutf@nwu.edu.cn。
扫 描 看 全 文
赵雪, 谷天峰, 范楠楠. 水泥改良黄土崩解试验研究[J]. 西北大学学报(自然科学版), 2024,54(1):18-25.
ZHAO Xue, GU Tianfeng, FAN Nannan. Experimental study on disintegration of loess improved by cement[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):18-25.
赵雪, 谷天峰, 范楠楠. 水泥改良黄土崩解试验研究[J]. 西北大学学报(自然科学版), 2024,54(1):18-25. DOI: 10.16152/j.cnki.xdxbzr.2024-01-003.
ZHAO Xue, GU Tianfeng, FAN Nannan. Experimental study on disintegration of loess improved by cement[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):18-25. DOI: 10.16152/j.cnki.xdxbzr.2024-01-003.
黄土具有多孔亚稳结构和水敏性,遇水时易发生崩解。黄土的崩解性是促进黄土高原地区水土流失、崩塌、滑坡等地质灾害发生的主要因素之一。作为一种造价低、应用方便的材料,水泥改良黄土(cement improved loess, CIL)在黄土地基、边坡工程中应用广泛,但其抗崩解性研究较少。为此,该文通过原状及不同掺量下的CIL室内崩解试验和扫描电子显微镜(scanning electron microscope, SEM)试验,分析改良前后黄土的崩解行为,探究水泥对黄土崩解性的改良效果及作用机制。结果表明,掺入水泥可大幅提升黄土的抗崩解能力,低掺量下CIL仍具有完整的崩解过程,但水泥能填充粒间孔隙,阻碍水分运移,同时水泥水化物及其与黄土颗粒的作用能增强粒间胶结,从而延缓了黄土崩解进程。随着水泥掺量的增加,抗崩解效果愈明显,累积崩解百分量几乎为0。土样不发生崩解的最小水泥掺量为3%。研究结果对黄土的抗侵蚀性研究和防灾工程设计具有重要意义。
Loess has porous metastable structure and water sensitivity, and is prone to collapse when it encounters water. The disintegration of loess is one of the main factors that promote soil erosion, collapse, landslide and other geological disasters in the Loess Plateau. As a low cost and convenient material, cement improved loess (CIL) is widely used in loess foundation and slope engineering, but there are few researches on its anti-disintegration. The disintegration behavior of loess before and after the improvement was analyzed through the laboratory disintegration test and scanning electron microsope(SEM) test under the condition of CIL and different content, and the improvement effect and mechanism of cement on loess disintegration were explored. The results show that cement can greatly improve the anti-disintegration ability of loess. At low content, CIL still has a complete disintegration process, but cement can fill the intergranular pores and hinder water transport. Meanwhile, cement hydration and its interaction with loess particles can enhance intergranular cementation, thus delaying the disintegration process of loess. With the increase of cement content, the anti-disintegration effect is more obvious, and the cumulative disintegration component is almost 0. The minimum cement content of soil sample without disintegration is 3%. The results are of great significance to the study of erosion resistance of loess and the design of disaster prevention engineering.
黄土水泥崩解性改良土SEM
loesscementthe property of disintegrationimproved soilSEM
LI P, XIE W L, PAK R Y S, et al. Microstructural evolution of loess soils from the loess plateau of China[J].CATENA, 2019, 173: 276-288.
PENG J B, SUN P, IGWE O, et al. Loess caves, a special kind of geo-hazard on loess plateau, northwestern China[J]. Engineering Geology, 2018, 236: 79-88.
黄玉华, 武文英, 冯卫, 等.陕北延安“7.3暴雨”诱发地质灾害主要类型与特征[J].西北地质, 2014, 47(3):140-146.
HUANG Y H, WU W Y, FENG W, et al. Main types and characteristics of the geo-hazards triggered by heavy rain on July 3 in Yan’an, Shaanxi[J]. Northwestern Geology, 2014, 47(3):140-146.
SECO A, RAMÍREZ F, MIQUELEIZ L, et al. Stabilization of expansive soils for use in construction[J]. Applied Clay Science, 2011, 51(3): 348-352.
DI SANTE M, FRATALOCCHI E, MAZZIERI F, et al. Time of reactions in a lime treated clayey soil and influence of curing conditions on its microstructure and behaviour[J]. Applied Clay Science, 2014, 99: 100-109.
MODARRES A, NOSOUDY Y M. Clay stabilization using coal waste and lime: Technical and environmental impacts[J]. Applied Clay Science, 2015, 116-117: 281-288.
贾卓龙, 晏长根, 李博, 等.瓜尔豆胶固化纤维黄土的抗侵蚀特性及生态护坡试验研究[J].岩土工程学报, 2022, 44(10):1881-1889.
JIA Z L, YAN C G, LI B, et al. Experimental study on erosion resistance and ecological slope protection of guar gum-treated fiber-reinforcement loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10):1881-1889.
MU J Q, ZHUANG J Q, KONG J X, et al. Study on improving loess properties with permeable polymer materials[J]. Polymers, 2022, 14(14): 2862.
ZHAO Y, ZHUANG J, WANG Y, et al. Improvement of loess characteristics using sodium alginate[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 1879-1891.
HOU Y F, LI P L, WANG J D. Review of chemical stabilizing agents for improving the physical and mechanical properties of loess[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(12): 9201-9215.
NIU Y Q, HOU L Z, QIN Z P, et al. Mechanical properties and constitutive model of the cement-improved loess under freeze-thaw conditions[J]. Materials, 2022, 15(19): 7042.
JIANG Y J, LI Q C, YI Y, et al. Cement-modified loess base for intercity railways: Mechanical strength and influencing factors based on the vertical vibration compaction method[J].Materials, 2020, 13(16): 3643.
葛菲, 巨玉文, 蒋宗耀, 等.水泥硅微粉改良黄土的抗剪强度试验研究[J].科学技术与工程, 2020, 20(16):6565-6569.
GE F, JU Y W, JIANG Z Y, et al. Experimental research on shear strength of improved loess with cement and silicon micropowder[J]. Science Technology and Engineering, 2020, 20(16):6565-6569.
WANG J D, GU T F, ZHANG M S, et al. Experimental study of loess disintegration characteristics[J]. Earth Surface Processes and Landforms, 2019, 44(6): 1317-1329.
谷天峰, 袁亮, 胡炜, 等.黑方台黄土崩解性试验研究[J].水文地质工程地质, 2017, 44(4):62-70.
GU T F, YUAN L, HU W, et al. Experimental research on disintegration of the Heifangtai loess[J]. Hydrogeology & Engineering Geology, 2017, 44(4):62-70.
蒋应军, 王翰越, 乔怀玉, 等.水、干湿及冻融循环作用下水泥改良黄土路基稳定性[J].科学技术与工程, 2020, 20(35):14592-14599.
JIANG Y J, WANG H Y, QIAO H Y, et al. Stability of cement-modified loess subgrade under water, wet-dry and freezing-thawing cycles[J]. Science Technology and Engineering, 2020, 20(35):14592-14599.
王任杰.水泥改良黄土的工程特性研究[D].兰州: 兰州大学, 2021.
SUN Y L, TANG L S, XIE J B. Relationship between disintegration characteristics and intergranular suction in red soil[J]. Sustainability, 2022, 14(21): 14234.
ZHANG W W, FAN N N, LI Y R, et al. Water-induced disintegration behaviour of Malan loess[J]. Earth Surface Processes and Landforms, 2022, 47(8): 1891-1901.
HAERI S M, KHOSRAVI A, GARAKANI A A, et al. Effect of soil structure and disturbance on hydromechanical behavior of collapsible loessial soils[J]. International Journal of Geomechanics, 2016, 17(1): 04016021.
ZHANG F Y, WANG G H, PENG J B. Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: Insights from hydrogeological conditions and liquefaction criteria[J]. Engineering Geology, 2022, 302: 106619.
WANG J D, PENG S J, XIE W L. Study on the cement-improved loess under the vibratory load by dynamic tests[J].Advanced Materials Research, 2013, 838/839/840/841:1302-1308.
JIANG Y J, YUAN K J, LI Q L, et al. Comparison of mechanical properties of cement-stabilized loess produced using different compaction methods[J].Advances in Materials Science and Engineering, 2020, 2020: 4835704.
ZHANG W Y, GUO A B, LIN C. Effects of cyclic freeze and thaw on engineering properties of compacted loess and lime-stabilized loess[J]. Journal of Materials in Civil Engineering, 2019, 31(9): 04019205.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构