西北大学 文化遗产学院,陕西 西安 710127
[ "温睿,男,西北大学文化遗产学院教授。本硕就读于中国科学技术大学,博士毕业于牛津大学,现任丝绸之路科技考古与文化遗产保护国家“111引智基地”主任,西北大学科技考古学研究中心主任,文化遗产研究与保护技术教育部重点实验室副主任,入选国家“万人计划”青年拔尖人才、陕西省“百人计划”、国家文物局文物保护科技优秀青年,荣获第十八届陕西省青年五四奖章。主要从事古代有机残留物、古代硅酸盐文物的科技分析。近五年主持国家重点研发计划、国家自然科学基金、国家社会科学基金重大项目子课题、国家文物局优青课题等科研项目10余项,以第一作者或通讯作者身份在国内外重要学术期刊发表论文60余篇。研究成果获得陕西省哲学社会科学优秀成果奖二等奖、三等奖各1项(均为第一完成人),陕西省高等学校人文社会科学优秀成果奖一、二、三等奖各1项(均为第一完成人)。主要学术贡献包括:对酒类相关物质遗存进行科技分析与保护研究,首次将红外光谱采集结合Fisher判别分析应用于酒类残留物的研究,为考古出土疑似酒残留物的识别和归类奠定了基础;对三星堆遗址祭祀坑内有机残留物的非靶向及靶向分析,深入揭示了其中蕴含的考古信息,为复杂埋藏条件下考古有机残留物的分析鉴定提供依据。" ]
扫 描 看 全 文
温睿, 祁学楷. 从宏观到微观:土壤及沉积物的考古学研究进展[J]. 西北大学学报(自然科学版), 2023,53(6):926-942.
WEN Rui, QI Xuekai. From macro to micro: Advances in archaeological research on soil and sediment[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):926-942.
温睿, 祁学楷. 从宏观到微观:土壤及沉积物的考古学研究进展[J]. 西北大学学报(自然科学版), 2023,53(6):926-942. DOI: 10.16152/j.cnki.xdxbzr.2023-06-005.
WEN Rui, QI Xuekai. From macro to micro: Advances in archaeological research on soil and sediment[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):926-942. DOI: 10.16152/j.cnki.xdxbzr.2023-06-005.
土壤或各类沉积物是考古发掘中最常见的物质,是各类考古遗存的载体,同时也是考古学研究的对象,蕴含着丰富的考古学信息。随着考古学研究方法和检测手段的快速发展,考古学研究对象由宏观层面拓展至分子级别的微观层面。以土壤或沉积物为对象的考古学研究也不断深化,呈现出精细化的趋势。目前考古土壤研究仍停留在宏观层面,微观研究尚处起步阶段。为实现从宏观到微观的跨越,该文系统梳理了考古土壤微观研究的4个方面——土壤地球化学研究、土壤微形态分析、沉积物古DNA研究和有机残留物分析。研究表明:①土壤地球化学利用元素异常分布推测人类活动,已应用于遗址勘探、功能区划分等;②土壤微形态揭示了自然与人为因素对土壤的影响,可用于环境考古研究;③沉积物古DNA实现对古代生物种属的识别,在古环境研究中应用广泛;④有机残留物分析可检测古代饮食、祭祀等活动的残留,为重建古代生产生活提供依据。该文认为上述4方面在考古土壤微观研究中发挥着重要作用,但尚未形成有机整体。因此,考古土壤微观研究应加强多学科综合研究,并探索统一的土壤保存方法,从而推动考古土壤研究从宏观走向微观,以发掘更丰富的考古信息。
Soils and various sediments are the most common materials in archaeological excavations. They are not only the matrix for various archaeological remains, but also objects of archaeological research themselves, containing abundant archaeological information. With the rapid development of archaeological research methods and detection techniques, the scope of archaeological research continues to expand from the macro level to the micro level at the molecular scale. Archaeological research on soils and sediments has also become increasingly refined. However, current archaeological soil research still remains at the macro level, while micro-level research is still in its infancy. To achieve the leap from macro to micro, this study systematically reviews four aspects of microscopic archaeological soil research: soil geochemistry, soil micromorphology, sediment ancient DNA and organic residue analysis. The study shows that: ①soil geochemistry uses elemental anomaly distributions to infer human activities, and has been applied to site surveying and functional area delineation; ②soil micromorphology reveals the influence of natural and anthropogenic factors on soils, and can be used for environmental archaeology research; ③sediment ancient DNA enables identification of ancient biological species, which has been widely applied to ancient environmental research; ④organic residueanalysis can detect remnants of ancient diet, rituals and other activities, providing evidence for reconstructing ancient production and living. In summary, the four parts above mentioned play important roles in microscopic archaeological soil research, but have not yet formed a system. This study suggests that archaeological soil microscopic research should strengthen multiproxy comprehensive research, explore unified soil preservation methods, so as to promote the transition of archaeological soil research from macro to micro, for excavating more abundant archaeological information.
考古土壤地球化学分析土壤微形态沉积物古DNA有机残留物分析
archaeological soilgeochemical analysissoil micromorphologysediment ancient DNAorganic residue analysis
PRICE T D, BURTON J H. Archaeological materials[M]//An introduction to archaeological chemistry. New York, NY: Springer, 2011: 41-72.
《考古学概论》编写组. 考古学概论[M]. 北京: 高等教育出版社, 2018: 221.
靳桂云. 土壤微形态分析及其在考古学中的应用[J]. 地球科学进展, 1999, 14(2): 197-200.
JIN G Y. Soil micromorphology in archaeology[J]. Advance in Earth Sciences, 1999, 14(2): 197-200.
赵志军. 植物考古学:理论、方法和实践[M]. 北京: 科学出版社, 2010: 7-9.
杨益民. 中国有机残留物分析的研究进展及展望[J]. 人类学学报, 2021, 40(3): 535-545.
YANG Y M. The research progress and prospect of organic residue analysis in China[J]. Acta Anthropologica Sinica, 2021, 40(3): 535-545.
杨益民. 古代残留物分析在考古中的应用[J]. 南方文物, 2008(2): 20-25.
YANG Y M. The application of ancient residue analysis in archaeology[J]. Cultural Relics in Southern China, 2008(2): 20-25.
EVERSHED R P. Organic residue analysis in archaeology: The archaeological biomarker revolution[J]. Archaeometry, 2008, 50(6): 895-924.
SALISBURY R. Advances in archaeological soil chemistry in central Europe[J]. Interdisciplinaria Archaeologica, Natural Sciences in Archaeology, 2020, XI(2): 199-211.
MIDDLETON W D, PRICE D T. Identification of activity areas by multi-element characterization of sediments from modern and archaeological house floors using inductively coupled plasma-atomic emission spectroscopy[J]. Journal of Archaeological Science, 1996, 23(5): 673-687.
PRICE T D, BURTON J H. Technology, function, and human activity[M]//An Introduction to Archaeological Chemistry. New York, NY: Springer, 2011: 1-24.
FERNÁNDEZ F G, TERRY R E, INOMATA T, et al. An ethnoarchaeological study of chemical residues in the floors and soils of Q′eqchi′ Maya houses at Las Pozas, Guatemala[J]. Geoarchaeology, 2002, 17(6): 487-519.
ENTWISTLE J A, DODGSHON R A, ABRAHAMS P W. An investigation of former land-use activity through the physical and chemical analysis of soils from the Isle of Lewis, Outer Hebrides[J]. Archaeological Prospection, 2000, 7(3): 171-188.
VYNCKE K, DEGRYSE P, VASSILIEVA E, et al. Identifying domestic functional areas. Chemical analysis of floor sediments at the Classical-Hellenistic settlement at Düzen Tepe (SW Turkey)[J]. Journal of Archaeological Science, 2011, 38(9): 2274-2292.
SALISBURY R B. Interpolating geochemical patterning of activity zones at Late Neolithic and Early Copper Age settlements in eastern Hungary[J]. Journal of Archaeological Science, 2013, 40(2): 926-934.
SIMNIŠKYTÉ-STRIMAITIENÉ A, SELSKIENÉ A, VAIĈIŪNIENÉ J, et al. Tracing archaeology through geochemistry: An example of a disturbed prehistoric hilltop settlement site in south-eastern Lithuania[J]. Interdisciplinaria Archaeologica, 2017, VIII(1): 17-33.
SOKOLOFF V P, CARTER G F. Time and trace metals in archaeological sites[J]. Science, 1952, 116(3001): 1-5.
GRIFFITH M A. A pedological investigation of an archaeological site in Ontario, Canada, II. Use of chemical data to discriminate features of the Benson site[J]. Geoderma, 1981, 25(1/2): 27-34.
BULL I D, EVERSHED R P, BETANCOURT P P. An organic geochemical investigation of the practice of manuring at a Minoan site on Pseira Island, Crete[J]. Geoarchaeology, 2001, 16(2): 223-242.
DAVIDSON D A, SIMPSON I A. The formation of deep topsoils in Orkney[J]. Earth Surface Processes and Landforms, 1984, 9(1): 75-81.
DAVIDSON D A, HARKNESS D D, SIMPSON I A. The formation of farm mounds on the Island of Sanday, Orkney[J]. Geoarchaeology, 1986, 1(1): 45-59.
MILLER N F, GLEASON K L. The Archaeology of Garden and Field[J]. American Antiquity, 1994, 60(60): 235-237.
GLASER B. Prehistorically modified soils of central Amazonia: A model for sustainable agriculture in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2007, 362(1478): 187-196.
DEGRYSE P, MUCHEZ P, WAELKENS M. Identification of ore extraction and metal working in ancient times: A case study of Sagalassos(SW Turkey)[J]. Journal of Geochemical Exploration, 2003, 77(1): 65-80.
COOK S R, CLARKE A S, FULFORD M G. Soil geochemistry and detection of early Roman precious metal and copper alloy working at the Roman town of Calleva Atrebatum (Silchester, Hampshire, UK)[J]. Journal of Archaeological Science, 2005, 32(5): 805-812.
SCOTT C B. Integrating multi-scalar sampling strategies for archaeological sediment chemistry[J]. Journal of Field Archaeology, 2020(3): 1-20.
DIRIX K, MUCHEZ P, DEGRYSE P, et al. Multi-element soil prospection aiding geophysical and archaeological survey on an archaeological site in suburban Sagalassos (SW-Turkey)[J]. Journal of Archaeological Science, 2013, 40(7): 2961-2970.
BINTLIFF J, DEGRYSE P. A review of soil geochemistry in archaeology[J]. Journal of Archaeological Science: Reports, 2022, 43: 103419.
RIMMINGTON J N. The element composition of soils from archaeological landscapes in Boeotia, Greece: A critical evaluation of element soil analysis in the investigation landscapes co-ordinated with the archaeological survey of Boeotia, Greece[D]. Durham, UK: Durham University, 1998.
ENTWISTLE J A, ABRAHAMS P W, DODGSHON R A. Multi-element analysis of soils from Scottish historical sites. Interpreting land-use history through the physical and geochemical analysis of soil[J]. Journal of Archaeological Science, 1998, 25(1): 53-68.
OONK S, SLOMP C P, HUISMAN D J. Geochemistry as an aid in archaeological prospection and site interpretation: Current issues and research directions[J]. Archaeological Prospection, 2009, 16(1): 35-51.
PASTOR A, GALLELLO G, CERVERA M L, et al.Mineral soil composition interfacing archaeology and chemistry[J]. TrAC Trends in Analytical Chemistry, 2016, 78: 48-59.
赵春燕, 陈星灿, 刘莉. 东下冯遗址圆形建筑土壤的化学成分分析[C]//刘庆柱. 考古学集刊:第18集. 北京: 科学出版社, 2010: 543-548.
ZHAO C Y, CHEN X C, LIU L. The chemical composition analysis of the soil in the circular architectural foundation at Dongxiafeng site[C]//LIU Q Z. Papers on Chinese archaeology: No.18. Beijing: Science Press, 2010: 543-548.
赵春燕. 土壤元素化学分析在考古学研究中的应用[EB/OL]. (2007-09-04)[2023-08-25]. http://www.kaogu.cn/cn/kaogusuogaikuang/jigoushezhi/yewujigou/kaogukeji/news/2013/1025/31766.htmlhttp://www.kaogu.cn/cn/kaogusuogaikuang/jigoushezhi/yewujigou/kaogukeji/news/2013/1025/31766.html.
ZHAO C Y. The Application of Soil Elemental Chemical Analysis in Archaeological Research[EB/OL]. (2007-09-04)[2023-08-25]. http://www.kaogu.cn/cn/kaogusuogaikuang/jigoushezhi/yewujigou/kaogukeji/news/2013/1025/31766.htmlhttp://www.kaogu.cn/cn/kaogusuogaikuang/jigoushezhi/yewujigou/kaogukeji/news/2013/1025/31766.html.
董广辉, 夏正楷, 刘德成, 等. 文明起源时期河南孟津地区人类活动对土壤化学性质的影响[J]. 兰州大学学报(自然科学版), 2007, 43(1): 6-10.
DONG G H, XIA Z K, LIU D C, et al. The impact of human activities on the chemical properties of paleosol in Mengjin, Henan Province during civilization[J]. Journal of Lanzhou University(Natural Sciences), 2007, 43(1): 6-10.
查理思, 吴克宁, 鞠兵, 等. 二里头文化遗址区土壤化学成分含量及变化研究[J]. 土壤通报, 2013, 44(6): 1414-1417.
ZHA L S, WU K N, JU B, et al. Research on the chemical constituents’ contents and changes of paleosol in Erlitou culture sites[J]. Chinese Journal of Soil Science, 2013, 44(6): 1414-1417.
查理思, 吴克宁, 冯力威, 等. 古人类活动对土壤发育的影响:以河南仰韶村文化遗址为例[J]. 土壤学报, 2016, 53(4): 850-859.
ZHA L S, WU K N, FENG L W, et al. Influence of ancient human activities on development of soil: A case study of Yangshao village cultural relic site, Henan Province[J]. Acta Pedologica Sinica, 2016, 53(4): 850-859.
李中轩, 朱诚, 张广胜, 等. 湖北辽瓦店遗址地层记录的环境变迁与人类活动的关系研究[J]. 第四纪研究, 2008, 28(6): 1145-1159.
LI Z X, ZHU C, ZHANG G S, et al. Multi-element records of the deposits for ancient human activities at the Liaowadian site in Hubei Province[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 1145-1159.
段清波. 秦始皇帝陵园考古研究[M]. 北京: 北京大学出版社, 2011: 102-104.
ZHANG S, YANG Y, STOROZUM M J, et al.Copper smelting and sediment pollution in Bronze Age China: A case study in the Hexi Corridor, Northwest China[J]. CATENA, 2017(156): 92-101.
YANG Y S, DONG G H, ZHANG S J, et al. Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China[J]. The Holocene, 2017, 27(2): 282-291.
WU M L, JIA Y N, ZHANG Y Z, et al. Heavy metal pollution from copper smelting during the Shang Dynasty at the Laoniupo site in the Bahe River valley, Guanzhong Basin, China[J]. Journal of Geographical Sciences, 2021, 31(11): 1675-1693.
COOK S R, CLARKE A S, FULFORD M G, et al. Characterising the use of urban space: A geochemical case study from Calleva Atrebatum (Silchester, Hampshire, UK) Insula IX during the late first/early second century AD[J]. Journal of Archaeological Science, 2014(50): 108-116.
HOLLIDAY V T, GARTNER W G. Methods of soil P analysis in archaeology[J]. Journal of Archaeological Science, 2007, 34(2): 301-333.
WILSON C A, DAVIDSON D A, CRESSER M S. Multi-element soil analysis: An assessment of its potential as an aid to archaeological interpretation[J]. Journal of Archaeological Science, 2008, 35(2): 412-424.
OONK S, SLOMP C P, HUISMAN D J, et al. Geochemical and mineralogical investigation of domestic archaeological soil features at the Tiel-Passewaaij site, The Netherlands[J]. Journal of Geochemical Exploration, 2009, 101(2): 155-165.
OONK S, SLOMP C P, HUISMAN D J, et al. Effects of site lithology on geochemical signatures of human occupation in archaeological house plans in the Netherlands[J]. Journal of Archaeological Science, 2009, 36(6): 1215-1228.
GAUSS R K, BÁTORA J, NOWACZINSKI E, et al. The Early Bronze Age settlement of Fidvár, Vráble (Slovakia): Reconstructing prehistoric settlement patterns using portable XRF[J]. Journal of Archaeological Science, 2013, 40(7): 2942-2960.
SAVE S, KOVACIK J, DEMARLY-CRESP F, et al. Large-scale geochemical survey by pXRF spectrometry of archaeological settlements and features: New perspectives on the method[J]. Archaeological Prospection, 2020, 27(3): 203-218.
LUBOS C, DREIBRODT S, BAHR A. Analysingspatio-temporal patterns of archaeological soils and sediments by comparing pXRF and different ICP-OES extraction methods[J]. Journal of Archaeological Science: Reports, 2016(9): 44-53.
FRAHM E, MONNIER G F, JELINSKI N A, et al. Chemical soil surveys at the Bremer Site (Dakota County, Minnesota, USA): Measuring phosphorous content of sediment by portable XRF and ICP-OES[J]. Journal of Archaeological Science, 2016(75): 115-138.
申朝瑞, 庞奖励. 土壤微形态学研究进展及前瞻[J]. 固原师专学报, 2005, 26(6): 34-40.
SHEN C R, PANG J L. Development and prospect of soil micromorphology[J]. Journal of Guyuan Teachers College(Natural Science), 2005, 26(6): 34-40.
徐祥明, 何毓蓉. 国外土壤微形态学研究的进展[J]. 山地学报, 2011, 29(6): 721-728.
XU X M, HE Y R. Review of soil micromorphology in foreign[J]. Journal of Mountain Science, 2011, 29(6): 721-728.
吴克宁, 王文静, 查理思, 等. 文化遗址区古土壤特性及古环境研究进展[J]. 土壤学报, 2014, 51(6): 1169-1182.
WU K N, WANG W J, ZHA L S, et al. Review of paleosol and palaeoenvironment in ancient culture sites[J]. Acta Pedologica Sinica, 2014, 51(6): 1169-1182.
李海群. 土壤微形态分析在环境考古中的应用研究[C]//中国人民大学北方民族考古研究所, 中国人民大学历史学院考古文博系. 北方民族考古(第4辑). 北京: 科学出版社, 2017: 143-149.
LI H Q. Soil micromorphology analysis in the application of environmental archaeology research[C]// Institute of Northern Ethnicity Archaeology, Renmin University of China&Department of Archaeology and Museology, School of History, Renmin University of China. The Archaeology of Northern Ethnicity(No.4). Beijing: Science Press, 2017: 143-149.
姜钰, 吴克宁, 查理思, 等. 土壤微形态分析在考古应用方面的研究进展[J]. 土壤通报, 2016, 47(4): 1007-1015.
JIANG Y, WU K N, ZHA L S, et al. Review of soil micromorphological analysis in archaeological research[J]. Chinese Journal of Soil Science, 2016, 47(4): 1007-1015.
ZHANG Y Z, HUANG C C, PANG J L, et al. Identification of the prehistoric catastrophes at the Lajia Ruins using micromorphological analysis within the Guanting Basin, Minhe County, Qinghai Province[J]. Archaeological and Anthropological Sciences, 2018, 10(3): 711-723.
张海, 庄奕杰, 方燕明, 等. 河南禹州瓦店遗址龙山文化壕沟的土壤微形态分析[J]. 华夏考古, 2016(4): 86-95.
ZHANG H, ZHUANG Y J, FANG Y M, et al. Soil micromorphological analysis of Longshan culture moat at Wadian site, Yuzhou, Henan Province[J]. Huaxia Archaeology, 2016(4): 86-95.
ZHUANG Y, ZHANG H, FANG Y, et al. Life cycle of a moat: A detailed micromorphological examination and broader geoarchaeological survey at the late Neolithic Wadian site, Central China[J]. Journal of Archaeological Science: Reports, 2017(12): 699-711.
LANG C, STUMP D. Geoarchaeological evidence for the construction, irrigation, cultivation, and resilience of 15th-18th century AD terraced landscape at Engaruka, Tanzania[J]. Quaternary Research, 2017, 88(3): 382-399.
WOUTERS B, DEVOS Y, MILEK K, et al. Medieval markets: A soil micromorphological and archaeobotanical study of the urban stratigraphy of Lier (Belgium)[J]. Quaternary International, 2017(460): 48-64.
GOLDBERG P, BERNA F. Micromorphology and context[J]. Quaternary International, 2010, 214(1/2): 56-62.
GUTIÉRREZ-RODRÍGUEZ M, TOSCANO M, GOLDBERG P. High-resolution dynamic illustrations in soil micromorphology: A proposal for presenting and sharing primary research data in publication[J]. Journal of Archaeological Science: Reports, 2018(20): 565-575.
POLLARD A M, ARMITAGE R A, MAKAREWICZ C, et al. Handbook of archaeological sciences[M]. 2nd ed. New Jersey: John Wiley & Sons, 2023: 233.
RAWLENCE N J, LOWE D J, WOOD J R, et al. Using palaeoenvironmental DNA to reconstruct past environments: Progress and prospects[J]. Journal of Quaternary Science, 2014, 29(7): 610-626.
WILLERSLEV E, COOPER A. Ancient DNA[J]. Proceedings of the Royal Society B: Biological Sciences, 2005, 272(1558): 3-16.
顾政权, 王昱程, 刘勇勤, 等. 古环境DNA与环境考古[J]. 第四纪研究, 2020, 40(2): 295-306.
GU Z Q, WANG Y C, LIU Y Q, et al. Ancient environmental DNA and environmental archaeology[J]. Quaternary Sciences, 2020, 40(2): 295-306.
POINAR H N, HOFREITER M, SPAULDING W G, et al. Molecular coproscopy: Dung and diet of the extinct ground sloth Nothrotheriops shastensis[J]. Science, 1998, 281(5375): 402-406.
COOLEN M J, OVERMANN J. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment[J]. Applied and Environmental Microbiology, 1998, 64(11): 4513-4521.
TABERLET P, COISSAC E, POMPANON F, et al. Towards next-generation biodiversity assessment using DNA metabarcoding[J]. Molecular Ecology, 2012, 21(8): 2045-2050.
KEY F M, POSTH C, KRAUSE J, et al. Mining metagenomic data sets for ancient DNA: Recommended protocols for authentication[J]. Trends in Genetics, 2017, 33(8): 508-520.
TABERLET P, COISSAC E, POMPANON F, et al. Towards next-generation biodiversity assessment using DNA metabarcoding[J]. Molecular Ecology, 2012, 21(8): 2045-2050.
SEERSHOLM F V, COLE T L, GREALY A, et al. Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(30): 7771-7776.
PEDERSEN M W, RUTER A, SCHWEGER C, et al. Postglacial viability and colonization in North America’s ice-free corridor[J]. Nature, 2016, 537(7618): 45-49.
QUINCE C, WALKER A W, SIMPSON J T, et al. Shotgun metagenomics, from sampling to analysis[J]. Nature Biotechnology, 2017, 35(9): 833-844.
侯卫国, 董海良, 蒋宏忱, 等. 沉积物中古DNA在古生态、古环境和古气候研究中的应用[J]. 地学前缘, 2017, 24(2): 286-291.
HOU W G, DONG H L, JIANG H C, et al. Applications of ancient DNA preserved in sediment in paleo-ecology, paleo-environment and paleo-climate studies[J]. Earth Science Frontiers, 2017, 24(2): 286-291.
ZHANG D J, XIA H, CHEN F H, et al. Denisovan DNA in late Pleistocene sediments from baishiya Karst cave on the Tibetan Plateau[J]. Science, 2020, 370(6516): 584-587.
顾政权, 高玉, 王一如, 等. 堆积物古DNA揭示西藏廓雄遗址的食物构成[J]. 中国科学(地球科学), 2023, 53(4): 823-835.
GU Z Q, GAO Y, WANG Y R, et al. Food resources of the Khog Gzung site on the Tibetan Plateau revealed by sedimentary ancient DNA[J]. Science China Earth Sciences, 2023, 66(4): 840-851.
BROWN A G, HARDENBROEK V M, FONVILLE T, et al. Ancient DNA, lipid biomarkers and palaeoecological evidence reveals construction and life on early medieval lake settlements[J]. Scientific Reports, 2021(11): 11807.
MORLEY M W, GOLDBERG P, ULIYANOV V A, et al. Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia)[J]. Scientific Reports, 2019, 9: 13785.
MASSILANI D, MORLEY M W, MENTZER S M, et al. Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2113666118.
HENDY J, COLONESEA A C, FRANZ I, et al. Ancient proteins from ceramic vessels at Catalhöyük West reveal the hidden cuisine of early farmers[J]. Nature Communications, 2018(9): 4064.
HAN B, SUN Z W, CHONG J R, et al. Lipid residue analysis of ceramic vessels from the Liujiawa site of the Rui State (early Iron Age, North China)[J]. Journal of Quaternary Science, 2022, 37(1): 114-122.
EVERSHED R P. Organic residue analysis in archaeology: The archaeological biomarker revolution[J]. Archaeometry, 2008, 50(6): 895-924.
JÓSSON H, GINOLHAC A, SCHUBERT M, et al. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters[J]. Bioinformatics, 2013, 29(13): 1682-1684.
HENDY J, WELKER F, DEMARCHI B, et al. A guide to ancient protein studies[J]. Nature Ecology & Evolution, 2018, 2(5): 791-799.
HENDY J. Ancient protein analysis in archaeology[J]. Science Advances, 2021, 7(3): eabb9314.
CASANOVA E, KNOWLES T D J, MULHALL I, et al. Generation of two new radiocarbon standards for compound-specific radiocarbon analyses of fatty acids from bog butter finds[J]. Radiocarbon, 2021, 63(3): 771-783.
POYNTER J, EGLINTON G. The biomarker concept-Strengths and weaknesses[J]. Fresenius’ Journal of Analytical Chemistry, 1991, 339(10): 725-731.
GREEN K A. The fate of lipids in archaeological burial soils[D]. York, UK: University of York, 2013.
HERON C, NILSEN G, STERN B, et al. Application of lipid biomarker analysis to evaluate the function of ′slab-lined pits′ in Arctic Norway[J]. Journal of Archaeological Science, 2010, 37(9): 2188-2197.
BARBA L A, ORTIZ A, LINK K F, et al. Chemical analysis of residues in floors and the reconstruction of ritual activities at the templo mayor, Mexico[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 1996: 139-156.
LEJAY M, ALEXIS M, QUÉNÉA K, et al. Organic signatures of fireplaces: Experimental references for archaeological interpretations[J]. Organic Geochemistry, 2016(99): 67-77.
LEJAY M, ALEXIS M A, QUÉNÉA K, et al. The organic signature of an experimental meat-cooking fireplace: The identification of nitrogen compounds and their archaeological potential[J]. Organic Geochemistry, 2019(138): 103923.
BUONASERA T, HERRERA-HERRERA A V, MALLOL C. Experimentally derived sedimentary, molecular, and isotopic characteristics of bone-fueled hearths[J]. Journal of Archaeological Method and Theory, 2019, 26(4): 1327-1375.
EVERSHED R P. Biomolecular archaeology and lipids[J]. World Archaeology, 1993, 25(1): 74-93.
OONK S, CAPPELLINI E, COLLINS M C. Soil proteomics: An assessment of its potential for archaeological site interpretation[J]. Organic Geochemistry, 2012(50): 57-67.
FREI K M, FREI R, MANNERING U, et al. Provenance of ancient textiles: A pilot study evaluating the strontium isotope system in wool[J]. Archaeometry, 2009, 51(2): 252-276.
HENDY J. Ancient protein analysis in archaeology[J]. Science Advances, 2021, 7(3): eabb9314.
EVERSHED R P, TUROSS N. Proteinaceous material from potsherds and associated soils[J]. Journal of Archaeological Science, 1996, 23(3): 429-436.
PAVELKA J, SMEJDA L, KUCKOVA S, et al. Challenge to molecular archaeology-Sediments contaminated by allochthonous animal proteins[J]. Journal of Liquid Chromatography & Related Technologies, 2020, 43(19/20): 863-874.
WHELTON H L, HAMMANN S, CRAMP L J E, et al. A call for caution in the analysis of lipids and other small biomolecules from archaeological contexts[J]. Journal of Archaeological Science, 2021(132): 105397.
MCGOVERN A, ELMORE K L, IIGAGNE D J, et al. Using artificial intelligence to improve real-time decision-making for high-impact weather[J]. Bulletin of the American Meteorological Society, 2017, 98(10): 2073-2090.
CURTIN L, D’ANDREAW J, BALASCION L, et al. Sedimentary DNA and molecular evidence for early human occupation of the Faroe Islands[J]. Communications Earth & Environment, 2021(2): 253.
LAUERF , PROSTK , GERLACH R, et al. Organic fertilization and sufficient nutrient status in prehistoric agriculture?: Indications from multi-proxy analyses of archaeological topsoil relicts[J]. PLoS One, 2014, 9(9): e106244.
LEEMING R, BALL A, ASHBOLT N, et al. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters[J]. Water Research, 1996, 30(12): 2893-2900.
SHILLITO L M, WHELTON H L, BLONG J C, et al. Pre-Clovis occupation of the Americas identified by human fecal biomarkers in coprolites from Paisley Caves, Oregon[J]. Science Advances, 2020, 6(29): eaba6404.
EVERSHED R P, BETHELL P H. Application of multimolecular biomarker techniques to the identification of fecal material in archaeological soils and sediments[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 1996: 157-172.
PROST K, BIRK J J, LEHNDORFFE , et al. Steroid biomarkers revisited: Improved source identification of faecal remains in archaeological soil material[J]. PLoS One, 2017, 12(1): e0164882.
WANG J J, SIMONEIT B R T, SHENG G Y, et al. The potential of alkyl amides as novel biomarkers and their application to paleocultural deposits in China[J]. Scientific Reports, 2017(7): 14667.
魏坚, 吕学明. 东北亚古代聚落与城市考古国际学术研讨会论文集[M]. 北京: 科学出版社, 2014: 517-525.
查理思, 吴克宁, 庄大昌, 等. 河南仰韶村遗址不同功能区土壤特征研究[J]. 土壤学报, 2020, 57(2): 500-507.
ZHA L S, WU K N, ZHUANG D C, et al. Soil properties of the Yangshao village cultural relic site, Henan province relative to function[J]. Acta Pedologica Sinica, 2020, 57(2): 500-507.
LANGGUT D, SHAHACK-GROSS R, ARIE E, et al. Micro-archaeological indicators for identifying ancient cess deposits: An example from Late Bronze Age Megiddo, Israel[J]. Journal of Archaeological Science: Reports, 2016(9): 375-385.
SHAHACK-GROSS R, SIMONS A, AMBROSE S H. Identification of pastoral sites using stable nitrogen and carbon isotopes from bulk sediment samples: A case study in modern and archaeological pastoral settlements in Kenya[J]. Journal of Archaeological Science, 2008, 35(4): 983-990.
BROWN A G, VAN HARDENBROEK M, FONVILLE T, et al. Ancient DNA, lipid biomarkers and palaeoecological evidence reveals construction and life on early medieval lake settlements[J]. Scientific Reports, 2021(11): 11807.
DUNNE J. Organic residue analysis and archaeology guidance for good practice: Supporting information[M]. London: Historic England, 2017: 13-14.
RODRÍGUEZ DE VERA C, HERRERA-HERRERA A V, JAMBRINA-ENRÍQUEZ M, et al. Micro-contextual identification of archaeological lipid biomarkers using resin-impregnated sediment slabs[J]. Scientific Reports, 2020(10): 20574.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构