1.西北大学 地质学系/大陆动力学国家重点实验室 陕西省早期生命与环境重点实验室,陕西 西安 710069
2.中国科学院南京地质与古生物研究所,江苏 南京 210008
[ "张志飞,西北大学地质学系教授,博士生导师,教育部长江学者特聘教授、杰青、中组部万人计划和科技部科技创新领军人才,全国优秀博士学位论文获得者。主要从事寒武纪大爆发与冠轮动物(腕足动物、软舌螺、帚虫和内肛动物)谱系演化研究,在Nature/Nature Communications等杂志发表学术论文150余篇,组织出版学术专辑4部,主持科技部重大专项项目、国家杰出青年科学基金、国际(地区)重点研究基金和基金委重大项目课题等多个国家级重点项目。研究成果先后获陕西高校科学技术奖一等奖、教育部自然科学奖一等奖和国家自然科学奖二等奖等。目前任Journal of Paleontology、Geological Journal和《古生物学报》等杂志副主编,兼任中国古生物学会副理事长、陕西省古生物学会理事长等职,指导学生完成的博士学位论文2次被评为陕西省优秀博士论文,多个博士后获博士后基金特别资助。" ]
扫 描 看 全 文
张志飞, 梁悦, 刘璠, 等. 寒武纪腕足动物起源及冠轮动物谱系演化[J]. 西北大学学报(自然科学版), 2023,53(6):857-885.
ZHANG Zhifei, LIANG Yue, LIU Fan, et al. The origin and evolution of Cambrian brachiopods and their phylogenetic relationships with lophotrochozoans from the Chengjiang Fauna[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):857-885.
张志飞, 梁悦, 刘璠, 等. 寒武纪腕足动物起源及冠轮动物谱系演化[J]. 西北大学学报(自然科学版), 2023,53(6):857-885. DOI: 10.16152/j.cnki.xdxbzr.2023-06-001.
ZHANG Zhifei, LIANG Yue, LIU Fan, et al. The origin and evolution of Cambrian brachiopods and their phylogenetic relationships with lophotrochozoans from the Chengjiang Fauna[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):857-885. DOI: 10.16152/j.cnki.xdxbzr.2023-06-001.
寒武纪大爆发是地球动物门类爆发性出现和地球生态系统演化发生转折的重要时期。自此,地球海洋生态系统从前寒武纪菌藻类支撑的2极食物链生态系统转变为动物消费驱动的3极食物链生态系统,成为地球隐生宙和显生宙的分水岭,是研究和探索显生宙地球宜居性演化的关键。寒武纪大爆发以地球海洋突然大量、快速出现的两侧动物和矿化壳体为标志。这些帽状、管状的壳体化石,除了少量蜕皮类,大多数属于不明亲缘关系的冠轮动物。因此,寒武纪早期冠轮动物的起源与谱系演化是古生物学乃至现代生物学颇具争议的热门研究课题之一。腕足动物是地质历史上化石保存最为丰富、地史延限最长的冠轮动物重要分支类群,是寒武纪演化动物群的核心代表,其研究对于了解古生态学、古地理学和地球生物宏演化具有十分重要的意义。目前对于腕足动物起源存在多种假说,主要包括帚虫状祖先起源、蛤氏虫起源、托莫特壳起源和胶结质椎管状触手冠动物起源等假说。该文以寒武纪腕足动物起源为主线,以化石系统实证或证伪国内外腕足动物起源假说为目的,全面总结了寒武纪腕足动物化石生物学的重要发现和认识,探讨了地球已知最早的内肛动物、笼头虫和分节的威瓦西虫,以及胶结质椎管状腕足动物玉玕囊形贝发现对揭示寒武纪腕足动物起源和冠轮动物多样性及其谱系演化的重要意义。然而,寒武纪大爆发与腕足动物起源的诸多研究问题远未解决,因此在后续研究中,结合多种埋藏相(包括特异型化石库和碳酸盐岩赋存的壳体化石),对于多门类冠轮动物化石开展综合解剖学和壳体显微结构对比研究,尤其是动物壳体矿化类型和显微结构的精细研究,是解决腕足动物乃至冠轮动物超门起源与演化问题的关键。
The Cambrian Explosion represents an important geological period in which major metazoan phyla appeared abruptly and the Earth’s ecosystems underwent a significant shift. Since then, the marine ecosystem on Earth has transitioned from a 2-trophic-level ecosystem during Precambrian to a 3-trophic-level ecosystem driven by animal consumption. This transition has become a key area of research for understanding the early evolution of the Earth habitability during the Phanerozoic Eon. The Cambrian Explosion is also marked by the sudden and rapid appearance of abundant bilateral animals with mineralized shells in the marine ecosystem. These cap-shaped and tubular shell fossils mostly belong to lophotrochozoans with uncertain biological affinities. Therefore, the origin and phylogenetic evolution of early Cambrian lophotrochozoans, especially those in the early Cambrian, are of highly debated topics in paleobiology and even modern evolutionary biology. Brachiopods are an important group of lophotrochozoans with rich fossil occurrences through the entire Phanerozoic. They constitute a major component of the Cambrian evolutionary fauna, and thus have significant implications for our understanding of paleoecology, paleogeography, and macroevolution of animals on Earth. As for the origin of Cambrian brachiopods, the Brachiopoda Fold Hypothesis (i.e. ,Halkieria, model), phoronid-like animal hypothesis, tommotiids’origin story, and the agglutinated tubular lophophorate hypothesis are proposed, and await further testing by additional fossils. This paper focuses on the origin of Cambrian brachiopods, systematically discusses various hypotheses and comprehensively summarizes recent discoveries in fossils, as well as explores the significant implications of the discovery of the earliest entoprocts, cage worms, and segmented ,Wiwaxia, as well as the agglutinated ,Yuganotheca elegan, for understanding the origin of brachiopods and their phylogenetic relationships and evolution within lophotrochozoans. Nevertheless, many questions regarding the issues on the brachiopods’ origins and Cambrian Explosion are yet to be resolved. Therefore, it is crucial to integrate multiple preservation types of fossil lophotrochozoans, collected from various types of depositional environments (exceptional preservation in shales and small shelly fossils in carbonates), so as to conduct comprehensive and comparative studies of the anatomies of soft bodied fossils and their relative biomineralized shell valves. These comparative studies will play a key role in tracing the origin of brachiopods and their phylogenetic relationship with other lophotrochozoans within all the metazoans.
腕足动物冠轮动物系统发生学生物矿化寒武纪大爆发
brachiopodslophotrochozoanphylogeneticsbiomineralizationCambrian Explosion
LINNAEUS C V. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species; cum characteribus, differentiis, synonymis, locis [M]. Stockholm: Laurentius Salvius. 1758.
OLSEN G J, WOESE C R. Archaeal genomics: An overview [J]. Cell, 1997, 89(7): 991-994.
MIAO L Y, MOCZYDŁOWSKA M, ZHU S X, et al. New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China [J]. Precambrian Research, 2019, 321: 172-198.
LAMB D M, AWRAMIK S M, CHAPMAN D J, et al. Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China [J]. Precambrian Research, 2009, 173(1): 93-104.
ZHU S X, ZHU M Y, KNOLL A H, et al. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China [J]. Nature Communications, 2016, 7(1): 11500.
JAVAUX E J, KNOLL A H. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution [J]. Journal of Paleontology, 2017, 91(2): 199-229.
BUTTERFIELD N J. Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes [J]. Paleobiology, 2000, 26(3): 386-404.
张志飞, 刘璠, 梁悦, 等. 寒武纪生命大爆发与地球生态系统起源演化 [J]. 西北大学学报(自然科学版), 2021, 51(6): 1065-1106.
ZHANG Z F, LIU F, LIANG Y, et al. The Cambrian Explosion of animals and the evolution of ecosystems on Earth [J]. Journal of Northwest University (Natural Science Edition), 2021, 51(6): 1065-1106.
ZHANG X L, SHU D G. Current understanding on the Cambrian Explosion: Questions and answers [J]. PalZ, 2021, 95(4): 641-660.
舒德干, 韩健. 澄江动物群的核心价值:动物界成型和人类基础器官诞生 [J]. 地学前缘, 2020, 27(6): 1-27.
SHU D G, HAN J. Core value of the Chengiang fauna: Formation of the animal kingdom and the birth of basic human organs. Earth Science Frontiers, 2020, 27(6): 1-27.
ERWIN D H. The origin of animal body plans: A view from fossil evidence and the regulatory genome [J]. Development, 2020, 147(4): dev182899.
朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究:进展与展望 [J]. 中国科学:地球科学, 2019, 49(10): 1455-1490.
ZHU M Y, ZHAO F C, YIN Z J, et al. The Cambrian Explosion: Advances and perspectives from China. Science China Earth Sciences [J]. 2019, 49(10): 1455-1490.
BICKNELL R D C, PATERSON J R. Reappraising the early evidence of durophagy and drilling predation in the fossil record: Implications for escalation and the Cambrian Explosion [J]. Biological Reviews of the Cambridge Philosophical Society, 2018, 93(2): 754-784.
HOU X G, SIVETER D J, SIVETER D J, et al. The Cambrian fossils of Chengjiang, China: The flowering of early animal life [M]. New Jersey: Wiley, 2017.
张兴亮, 舒德干. 寒武纪大爆发的因果关系[J]. 中国科学:地球科学, 2014, 44(6): 1155-1170.
ZHANG X L, SHU D G. 2014. Causes and consequences of the Cambrian explosion[J]. Science China: Earth Sciences, 57: 930-942
ZHANG X L. Fossil treasure house for exploring the Cambrian Explosion: Figure 1 [J]. National Science Review, 2014, 1: 488-489.
ERWIN D H, LAFLAMME M, TWEEDT S M, et al. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals [J]. Science, 2011, 334(6059): 1091-1097.
陈均远. 动物世界的黎明 [M]. 南京: 江苏科学技术出版社, 2004.
CHEN J Y. The Dawn of Animal World [M]. Nanjing: Phoenix Science Press, 2004.
张志飞, 陈飞扬. 寒武纪大爆发——早期后生动物辐射之谜:序言 [J]. 古生物学报, 2017, 56(4): 409-414.
ZHANG Z F, CHEN F Y. Introduction: The Cambrian radiation of metazoans-new advances and fossil discoveries from China [J]. Acta Palaeontologica Sinica, 2017, 56(4): 409-414.
SHU D G, ISOZAKI Y, ZHANG X L, et al. Birth and early evolution of metazoans [J]. Gondwana Research, 2014, 25(3): 884-895.
CARLSON S J. The evolution of Brachiopoda [J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 409-438.
LUO Y J, KANDA M, KOYANAGI R, et al. Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads [J]. Nature Ecology & Evolution, 2018, 2(1): 141-151.
LUO Y J, TAKEUCHI T, KOYANAGI R, et al. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization [J]. Nature Communications, 2015, 6(1): 8301.
NESNIDAL M P, HELMKAMPF M, MEYER A, et al. New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias [J]. BMC Evolutionary Biology, 2013, 13(1): 1-13.
HEJNOL A, OBST M, STAMATAKIS A, et al. Assessing the root of bilaterian animals with scalable phylogenomic methods [J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1677): 4261-4270.
HEINO J. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? [J]. Ecological Indicators, 2010, 10(2): 112-117.
HAUSDORF B, HELMKAMPF M, NESNIDAL M P, et al. Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida) [J]. Molecular Phylogenetics and Evolution, 2010, 55(3): 1121-1127.
GIRIBET G. Assembling the lophotrochozoan (=spiralian) tree of life [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1496): 1513-1522.
HELMKAMPF M, BRUCHHAUS I, HAUSDORF B. Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept [J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1645): 1927-1933.
DUNN C W, HEJNOL A, MATUS D Q, et al. Broad phylogenomic sampling improves resolution of the animal tree of life [J]. Nature, 2008, 452(7188): 745-749.
SCHOPF J W. Fossil evidence of Archaean life [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1470): 869-885.
NUTMAN A P, BENNETT V C, FRIEND C R L, et al. Rapid emergence of life shown by discovery of 3, 700-million-year-old microbial structures [J]. Nature, 2016, 537(7621): 535-538.
KNOLL A H, FOLLOWS M J. A bottom-up perspective on ecosystem change in Mesozoic Oceans [J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1841): 20161755.
ZHANG Z L, ZHANG Z F, MA J Y, et al. Fossil evidence unveils an early Cambrian origin for Bryozoa [J]. Nature, 2021, 599(7884): 251-255.
ZHANG Z F, LI G X, HOLMER L E, et al. An early Cambrian agglutinated tubular lophophorate with brachiopod characters [J]. Scientific Reports, 2014, 4(1): 4682.
GIRIBET G. Morphology should not be forgotten in the era of genomics-a phylogenetic perspective [J]. Zoologischer Anzeiger-A Journal of Comparative Zoology, 2015, 256: 96-103.
张志飞, 张志亮, 李国祥. 寒武纪腕足动物起源:假说、问题与展望 [J]. 古生物学报, 2016, 55(4): 403-423.
ZHANG Z F, ZHANG Z L, LI G X. The Cambrian evolution of Brachiopoda: Hypotheses, problems and fossil discoveries [J]. Acta Palaeontologica Sinica, 55(4): 403-423.
ZHANG Z L, GHOBADI P M, POPOV L E, et al. The oldest Cambrian trilobite-brachiopod association in South China [J]. Gondwana Research, 2021, 89: 147-167.
ZHANG Z F, STROTZ L C, TOPPER T P, et al. An encrusting kleptoparasite-host interaction from the early Cambrian [J]. Nature Communications, 2020, 11: 2625.
ZHANG Z F, BROCK G A. New evolutionary and ecological advances in deciphering the Cambrian explosion of animal life [J]. Journal of Paleontology, 2018, 92(1): 1-2.
ZHANG Z L, ZHANG Z F, WANG H Z. Epithelial cell moulds preserved in the earliest acrotretid brachiopods from the Cambrian (Series 2) of the Three Gorges area, China [J]. GFF, 2016, 138(4): 455-466.
ZHANG Z F, SMITH M R, SHU D G. New reconstruction of the Wiwaxia scleritome, with data from Chengjiang juveniles [J]. Scientific Reports, 2015, 5: 14810.
ZHANG Z F, HOLMER L E. Exceptionally preserved brachiopods from the Chengjiang Lagerstatte (Yunnan, China): Perspectives on the Cambrian Explosion of metazoans [J]. Science Foundation in China, 2013, 21(2): 66-80.
ZHANG Z F, HOLMER L E, SKOVSTED C B, et al. A sclerite-bearing stem group entoproct from the early Cambrian and its implications [J]. Scientific Reports, 2013, 3(1): 1066.
ZHANG Z F, HOLMER L E, OU Q A, et al. The exceptionally preserved Early Cambrian stem rhynchonelliform brachiopod Longtancunella and its implications [J]. Lethaia, 2011, 44(4): 490-495.
ZHANG Z F, HOLMER L E, ROBSON S P, et al. First record of repaired durophagous shell damages in Early Cambrian lingulate brachiopods with preserved pedicles [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302(3/4): 206-212.
ZHANG Z F, HOLMER L E, POPOV L, et al. An obolellate brachiopod with soft-part preservation from the Early Cambrian Chengjiang fauna of China [J]. Journal of Paleontology, 2011, 85(3): 460-463.
ZHANG Z F, HAN J, WANG Y, et al. Epibionts on the lingulate brachiopod Diandongia from the early Cambrian Chengjiang Lagerstätte, South China [J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 277(1679): 175-181.
ZHANG Z F, LI G X, EMIG C C, et al. Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian, South China) [J]. Geobios, 2009, 42(5): 649-661.
ZHANG Z F, ROBSON S P, EMIG C, et al. Early Cambrian radiation of brachiopods: A perspective from South China [J]. Gondwana Research, 2008, 14(1/2): 241-254.
ZHANG Z F, SHU D G, EMIG C, et al. Rhynchonelliformean brachiopods with soft-tissue preservation from the early Cambrian Chengjiang lagerstätte of South China [J]. Palaeontology, 2007, 50(6): 1391-1402.
ZHANG Z F, SHU D G, HAN J, et al. A gregarious lingulid brachiopod Longtancunellachengjiangensis from the lower Cambrian, South China [J]. Lethaia, 2007, 40(1): 11-18.
ZHANG Z F, HAN J, ZHANG X L, et al. Note on the gut preserved in the Lower Cambrian Lingulellotreta (Lingulata, Brachiopoda) from Southern China [J]. Acta Zoologica, 2007, 88(1): 65-70.
ZHANG Z F, SHU D G, HAN J, et al. New data on the rare Chengjiang (lower Cambrian, South China) linguloid brachiopod Xianshanella haikouensis [J]. Journal of Paleontology, 2006, 80(2): 203-211.
ZHANG Z F, SHU D G, HAN J, et al. Morpho-anatomical differences of the Early Cambrian Chengjiang and Recent lingulids and their implications [J]. Acta Zoologica, 2005, 86(4): 277-288.
ZHANG Z F, HAN J, ZHANG X L, et al. Soft-tissue preservation in the lower Cambrian linguloid brachiopod from South China [J]. Acta Palaeontologica Polonica, 2004, 49(2), 259-266.
ZHANG Z F, HAN J. A new linguliform brachiopod from the Chengjiang Lagerstätte [J]. Journal of Northwest University (natural science edition), 2004, 34(4): 449-452.
ZHANG Z F, HAN J, ZHANG X L, et al. Pediculate Brachiopod Diandongia pista from the Lower Cambrian of South China [J]. Acta Geologica Sinica-English Edition, 2003, 77(3): 288-293.
TOPPER T P, STROTZ L C, HOLMER L E, et al. Survival on a soft seafloor: Life strategies of brachiopods from the Cambrian Burgess Shale [J]. Earth-Science Reviews, 2015, 151: 266-287.
TOPPER T P, STROTZ L C, HOLMER L E, et al. Competition and mimicry: The curious case of chaetae in brachiopods from the middle Cambrian Burgess Shale [J]. BMC Evolutionary Biology, 2015, 15: 1-16.
TOPPER T P, HOLMER L E, CARON J B. Brachiopods hitching a ride: An early case of commensalism in the middle Cambrian Burgess Shale [J]. Scientific Reports, 2014, 4(1): 6704.
戎嘉余. 寒武纪腕足动物 [M]//西南地区地层古生物手册. 北京: 科学出版社, 1974.
LI G X, ZHANG Z F, RONG J Y, et al. Cambrian Brachiopod Genera on Type Species of China [M]//Phanerozoic Brachiopod Genera of China. Beijing: Science Press, 2017.
JIN Y G, HOU X G, WANG H Y. Lower Cambrian pediculate lingulids from Yunnan, China [J]. Journal of Paleontology, 1993, 67(5): 788-798.
HARPER D A T. The Ordovician biodiversification: Setting an agenda for marine life [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 148-166.
DROSER M L, BOTTJER D J, SHEEHAN P M, et al. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions [J]. Geology, 2000, 28(8): 675.
DROSER M L, BOTTJER D J, SHEEHAN P M. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life [J]. Geology, 1997, 25(2): 167.
BOTTING J P, MUIR L A, ZHANG Y D, et al. Flourishing sponge-based ecosystems after the end-ordovician mass extinction [J]. Current Biology, 2017, 27(4): 556-562.
BOTTING J P, CÁRDENAS P, PEEL J S. A crown-group demosponge from the early Cambrian Sirius Passet Biota, North Greenland [J]. Palaeontology, 2015, 58(1): 35-43.
DROSER M L, JENSEN S, GEHLING J G. Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: Implications for the record of early bilaterians and sediment mixing[J]. Proceedings of the National Academy of Sciences, 2002, 99(20): 12572-12576.
MCGHEE G R, SHEEHAN P M, BOTTJER D J, et al. Ecological ranking of Phanerozoic biodiversity crises: Ecological and taxonomic severities are decoupled [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211(3/4): 289-297.
赵方臣, 朱茂炎, 胡世学. 云南寒武纪早期澄江动物群古群落分析 [J]. 中国科学:地球科学, 2010, 40(9): 1135-1153.
ZHAO F C, ZHU M Y, HU S X. Community structure and composition of the Cambrian Chengjiang biota[J]. Science China Earth Sciences, 2010, 40(9): 1135-1153.
WANG H Z, ZHANG Z F, HOLMER L E, et al. Peduncular attached secondary tiering acrotretoid brachiopods from the Chengjiang fauna: Implications for the ecological expansion of brachiopods during the Cambrian Explosion[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 323/324/325: 60-67.
HOLMER L E, SKOVSTED C B, BROCK G A, et al. The Early Cambrian tommotiid Micrina, a sessile bivalved stem group brachiopod [J]. Biology Letters, 2008, 4(6): 724-728.
JIN Y G, WANG H Y. Revision of the lower Cambrian brachiopod Heliomedusa Sun & Hou, 1987 [J]. Lethaia, 1992, 25(1): 35-49.
JIN Y G, WANG H Y, WANG W. Palaeoecological aspects of brachiopods from Chiungchussu Formation of early Cambrian age, eastern Yunnan, China [J]. Palaeoecology of China, 1991: 25-47.
HOLMER L E, CARON J B. A spinose stem group brachiopod with pedicle from the Middle Cambrian Burgess Shale [J]. Acta Zoologica, 2006, 87(4): 273-290.
MURDOCK D J E, BENGTSON S, MARONE F, et al. Evaluating scenarios for the evolutionary assembly of the brachiopod body plan [J]. Evolution & Development, 2014, 16(1): 13-24.
STOLK S P, HOLMER L E, CARON J B. First record of the brachiopod lingulella waptaensis with pedicle from the middle Cambrian burgess shale [J]. Acta Zoologica, 2010, 91(2): 150-162.
HOLMER L E, ZHANG Z F, TOPPER T P, et al. The attachment strategies of Cambrian kutorginate brachiopods: The curious case of two pedicle openings and their phylogenetic significance [J]. Journal of Paleontology, 2018, 92(1): 33-39.
LIANG Y E, HOLMER L E, DUAN X L, et al. Brachiopods from the latham shale lagerstätte (Cambrian series 2, stage 4) and Cadiz Formation (Miaolingian, Wuliuan), California [J]. Journal of Paleontology, 2022, 96(1): 61-80.
LIANG Y, STROTZ L C, TOPPER T P, et al. Evolutionary contingency in lingulid brachiopods across mass extinctions [J]. Current Biology, 2023, 33(8): 1565-1572.
SEPKOSKI J J. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria [J]. Paleobiology, 1979, 5(3): 222-251.
WILLIAMS A, CARLSON S J, SELDEN P A. Treatise on Invertebrate Paleontology [C]//Affinities of brachiopods and trends in their evolution. Colorado: Geological Society of America, 2007: 2801-2816.
CARLSON S J. Phylogenetic relationships among extant brachiopods [J]. Cladistics, 1995, 11(2): 131-197.
HARPER D A T, SERVAIS T. Chapter 1 Early Palaeozoic biogeography and palaeogeography: Towards a modern synthesis [J]. Geological Society, London, Memoirs, 2013, 38(1): 1-4.
戎嘉余. 中国的赫南特贝动物群(Hirnantia fauna)并论奥陶系与志留系的分界 [J]. 地层学杂志, 1979, 3(1): 1-29,81.
RONG J Y. The Hirnantia fauna of China with comments on the Ordovician-Silurian boundary [J]. Journal of Stratigraphy, 1979, 3(1): 1-29,81.
张建华. 湖南慈利奥陶纪磷酸质无铰合构造的腕足类 [J]. 古生物学报, 1995, 34(2): 152-170,268.
ZHANG J H. Ordovician phosphatic inarticulate brachiopods from Cili, Hunan [J]. Acta Palaeontologica Sinica, 1995, 34(2): 152-170,268.
HOLMER L E, POPOV L E, BASSETT M G, et al. Cambrian-Early Ordovician brachiopods from Malyi Karatau, the western Balkhash region, and Tien Shan, central Asia [J]. Special Papers in Palaeontology, 2001, 65: 1-180.
HENDERSON R A, MACKINNON D I. New Cambrian inarticulate Brachiopoda from Australasia and the age of the Tasman Formation [J]. Alcheringa: an Australasian Journal of Palaeontology, 1981, 5(4): 289-309.
BASSETT M G, POPOV L E, HOLMER L E. Organophosphatic brachiopods: Patterns of biodiversification and extinction in the early Palaeozoic [J]. Geobios, 1999, 32(2): 145-163.
EMIG C. On the origin of the lophophorata [J]. Journal of Zoological Systematics and Evolutionary Research, 2009, 22(2): 91-94.
GUTMANN W F, VOGEL K, ZORN H. Brachiopods: Biomechanical interdependences governing their origin and phylogeny [J]. Science, 1978, 199(4331): 890-893.
POPOV L Y. The Cambrian radiation of brachiopods [M]//LIPPS J H, SIGNOR P W. Origin and early evolution of the Metazoa. Boston, MA: Springer US, 1992: 399-423.
WILLIAMS A, CARLSON S J, BRUNTON C H C, et al. Brachiopod classification [M]//WILLIAMS W, et al. Brachiopoda (revised). Kansas: Geological Society of America and University of Kansas, 2000: 1-29.
EMIG C C. Tools for linguloid taxonomy: The genus Obolus (Brachiopoda) as an example [J]. Carnets De Geologie, 2002(A01): 1-9.
WILLIAMS A, CUSACK M. Lingulid shell mediation in clay formation [J]. Lethaia, 1996, 29(4): 349-360.
HOLMER L E, POPOV L E, BASSETT M G, et al. Phylogenetic analysis and ordinal classification of the Brachiopoda [J]. Palaeontology, 1995, 38: 713-741.
COHEN B L, WEYDMANN A. Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian [J]. Organisms Diversity & Evolution, 2005, 5(4): 253-273.
COHEN B L. Monophyly of brachiopods and phoronids: Reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.) [J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 2000, 267(1440): 225-231.
BALTHASAR U, BUTTERFIELD N J. Early Cambrian “soft-shelled” brachiopods as possible stem-group phoronids [J]. Acta Palaeontologica Polonica, 2009, 54(2): 307-314.
HARPER D A T, POPOV L E, HOLMER L E. Brachiopods: Origin and early history [J]. Palaeontology, 2017, 60(5): 609-631.
ZHURAVLEV A Y, WOOD R A, PENNY A M. Ediacaran skeletal metazoan interpreted as a lophophorate [J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1818): 20151860.
BUDD G E, JACKSON I S C. Ecological innovations in the Cambrian and the origins of the crown group phyla [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2016, 371(1685): 20150287.
MOYSIUK J, SMITH M R, CARON J B. Hyoliths are palaeozoic lophophorates [J]. Nature, 2017, 541(7637): 394-397.
SKOVSTED C B, HOLMER L E, LARSSON C M, et al. The scleritome of Paterimitra: An Early Cambrian stem group brachiopod from South Australia [J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1662): 1651-1656.
COHEN B L, HOLMER L E, LÜTER C. The brachiopod fold: A neglected body plan hypothesis [J]. Palaeontology, 2003, 46(1): 59-65.
HOLMER L E, SKOVSTED C B, WILLIAMS A. A stem group brachiopod from the lower Cambrian: Support for A Micrina (halkieriid) ancestry[J]. Palaeontology, 2002, 45(5): 875-882.
HALANYCH K M, BACHELLER J D, AGUINALDO A M A, et al. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals [J]. Science, 1995, 267(5204): 1641-1643.
NIELSEN C. The phylogenetic position of Entoprocta, Ectoprocta, Phoronida, and Brachiopoda [J]. Integrative and Comparative Biology, 2002, 42(3): 685-691.
NIELSEN C. The development of the brachiopod Crania (Neocrania) anomala (O. F. Müller) and its phylogenetic significance [J]. Acta Zoologica, 1991, 72(1): 7-28.
CONWAY MORRIS S, ROBISON R A. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia [J]. 1988, 122: 1-48.
CARLSON S J, SELDON P A. Treatise on Invertebrate Paleontology [C]//Recent research on brachiopod evolution. Colorado: Geological Society of America, 2007: 2878-2900.
WILLIAMS A, HOLMER L E. Shell structure and inferred growth, functions and affinities of the sclerites of the problematic Micrina [J]. Palaeontology, 2002, 45(5): 845-873.
LI G X, XIAO S H. Tannuolina and Micrina (Tannuolinidae) from the Lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction [J]. Journal of Paleontology, 2004, 78(5): 900-913.
PAPS J, BAGUÑÀ J, RIUTORT M. Lophotrochozoa internal phylogeny: New insights from an up-to-date analysis of nuclear ribosomal genes [J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1660): 1245-1254.
VINTHER J, NIELSEN C. The early Cambrian Halkieria is a mollusc [J]. Zoologica Scripta, 2005, 34(1): 81-89.
HOLMER L E, SKOVSTED C B, LARSSON C, et al. First record of a bivalved larval shell in Early Cambrian tommotiids and its phylogenetic significance: Larval shell of Cambrian tommotiids [J]. Palaeontology, 2011, 54(2): 235-239.
ALTENBURGER A, WANNINGER A, HOLMER L E. Metamorphosis in Craniiformea revisited: Novocrania anomala shows delayed development of the ventral valve [J]. Zoomorphology, 2013, 132(4): 379-387.
PETERSON K J, EERNISSE D J. Animal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rDNA gene sequences [J]. Evolution & Development, 2001, 3(3): 170-205.
POPOV L E, BASSET M G, HOLMER L E, et al. Phylogenetic analysis of higher taxa of Brachiopoda [J]. Lethaia, 1993, 26(1): 1-5.
HAUSDORF B, HELMKAMPF M, MEYER A, et al. Spiralian phylogenomics supports the resurrection of Bryozoa comprising Ectoprocta and Entoprocta [J]. Molecular Biology and Evolution, 2007, 24(12): 2723-2729.
WILLIAMS A, HURST J M. Brachiopod evolution [M]//Developments in Palaeontology and Stratigraphy. Amsterdam: Elsevier, 1977: 79-121.
ROWELL A J. The monophyletic origin of the Brachiopoda [J]. Lethaia, 1982, 15(4): 299-307.
ROWELL A J, TAYLOR M E. The Cambrian radiation: monophyletic or polyphyletic origins [C]//Short papers for the Second International Symposium on the Cambrian System. Virginia: US Geological Survey, 1981: 184-187.
EMIG C C. Embryology of Phoronida [J]. American Zoologist, 1977, 17(1): 21-37.
Clark R B. The Origin of Major Invertebrate Groups [M]//Radiation of the metazoan. New York: Acdemic Press, 1979: 55-101.
SPERLING E A, PISANI D, PETERSON K J. Molecular paleobiological insights into the origin of the Brachiopoda [J]. Evolution & Development, 2011, 13(3): 290-303.
VALENTINE J W. On the origin of phyla [M]. Chicago: University of Chicago Press, 2004.
CHEN J Y, ZHOU G Q. Biology of the Chengjiang fauna [J]. Collection and Research, 1997(10): 11-105.
HUANG D Y, VANNIER J, CHEN J Y. Anatomy and lifestyles of Early Cambrian priapulid worms exemplified by Corynetis and Anningvermis from the Maotianshan Shale (SW China) [J]. Lethaia, 2004, 37(1): 21-33.
ZHANG Z F, SMITH M R, REN X Y. The Cambrian cirratuliform Iotuba denotes an early annelid radiation [J]. Proceedings of the Royal Society B: Biological Sciences, 2023, 290(1992): 20222014.
SKOVSTED C B, KOUCHINSKY A, BENGTSON S, et al. The problematic early Cambrian fossil Tumulduria incomperta represents the detached ventral interarea of a paterinid brachiopod [J]. Acta Palaeontologica Polonica, 2014, 59(2): 359-365.
SKOVSTED C B, BROCK G A, PATERSON J R, et al. The scleritome of Eccentrotheca from the lower Cambrian of South Australia: Lophophorate affinities and implications for tommotiid phylogeny [J]. Geology, 2008, 36(2): 171-174.
张志飞, 张志亮. 寒武纪冠轮动物化石研究进展与假体腔动物的实证起源[J]. 自然杂志, 2014, 36(1): 34-41.
ZHANG Z F, ZHANG Z L. New fossil records of Cambrian Lophotrochozoans (Spiralian: Entoprocta) and their implication for pseudocoelomate origin [J]. Chinese Journal of Nature, 2014, 36(1): 34-41.
LAUMER C E, BEKKOUCHE N, KERBL A, et al. Spiralian phylogeny informs the evolution of microscopic lineages[J]. Current Biology, 2015, 25(15): 2000-2006.
BENTON M J, HARPER D A T. Introduction to paleobiology and the fossil record [M]. New Jersey: John Wiley & Sons, 2009.
BENTON M J, HARPER D A T. Introduction to paleobiology and the fossil record [M]. New Jersey: John Wiley & Sons, 2020.
BUDD G E, JENSEN S. The origin of the animals and a ‘Savannah’hypothesis for early bilaterian evolution [J]. Biological reviews, 2017, 92(1): 446-473.
BABCOCK L E, ROBISON R A. Taxonomy and paleobiology of some Middle Cambrian Scenella (Cnidaria) and hyolithids (Mollusca) from western North America [J]. The University of Kansas Paleontological Contributions, 1988, 121: 1-22.
SUN H J, SMITH M R, ZENG H, et al. Hyoliths with pedicles illuminate the origin of the brachiopod body plan [J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285(1887): 20181780.
ZHAO F C, SMITH M R, YIN Z J, et al. Orthrozanclus Elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution [J]. Scientific Reports, 2017, 7(1): 16232.
PEEL J S. An outer shelf shelly fauna from Cambrian Series 2 (Stage 4) of North Greenland (Laurentia) [J]. Journal of Paleontology, 2021, 95(S83): 1-41.
TEMEREVA E N. First data on the organization of the nervous system in juveniles of Novocrania anomala (Brachiopoda, Craniiformea) [J]. Scientific Reports, 2020, 10(1): 9295.
SKOVSTED C B, MARTÍ MUS M, ZHANG Z L, et al. On the origin of hyolith Helens [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 555: 109848.
LIU F, SKOVSTED C B, TOPPER T P, et al. Are hyoliths palaeozoic lophophorates? [J]. National Science Review, 2020, 7(2): 453-469.
LI L Y, ZHANG X L, SKOVSTED C B, et al. Homologous shell microstructures in Cambrian hyoliths and molluscs [J]. Palaeontology, 2019, 62(4): 515-532.
KIMMIG J, PRATT B R. Coprolites in the ravens throat river Lagerstätte of Northwestern Canada: Implications for the middle Cambrian food web [J]. Palaios, 2018, 33(4): 125-140.
刘璠, 张志飞, SKOVSTED C B. 寒武纪软舌螺壳体形态解剖研究与冠轮动物演化 [J]. 科学通报, 2021, 66(27): 3631-3644.
LIU F, ZHANG Z F, SKOVSTED C B. Advances in the soft anatomy and skeletal microstructures of Cambrian hyoliths in China and their implications for lophotrochozoan evolution [J]. Chinese Science Bulletin, 2021, 66(27): 3631-3644.
LIU F, SKOVSTED C B, TOPPER T P, et al. Revision of Triplicatella (Orthothecida, Hyolitha) with preserved digestive tracts from the early Cambrian Chengjiang Lagerstätte, South China [J]. Historical Biology, 2021, 33(9): 1857-1871.
LIU F, SKOVSTED C B, TOPPER T P, et al. Soft part preservation in hyolithids from the lower Cambrian (Stage 4) Guanshan Biota of South China and its implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110079.
LIU F, SKOVSTED C B, TOPPER T P, et al. A fresh look at the Hyolithid Doliutheca from the Early Cambrian (Stage 4) Shipai Formation of the Three Gorges Area, Hubei, South China [J]. Biology, 2022, 11(6): 875.
LIU F, SKOVSTED C B, TOPPER T P, et al. Hyolithid-like hyoliths without helens from the early Cambrian of South China, and their implications for the evolution of hyoliths [J]. BMC Ecology and Evolution, 2022, 22(1): 1-15.
TOPPER T P, GUO J F, CLAUSEN S, et al. A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria [J]. Nature Communications, 2019, 10(1): 1366.
GUO J F, LI Y, HAN H P, et al. New macroscopic problematic fossil from the Early Cambrian Yanjiahe Biota, Yichang, Hubei, China [J]. Acta Geologica Sinica-English Edition, 2012, 86(4): 791-798.
LIANG Y, HOLMER L E, SKOVSTED C B, et al. Shell structure, ornamentation and affinity of the problematic early Cambrian brachiopod Heliomedusa orienta [J]. Lethaia, 2020, 53(4): 574-587.
LIANG Y, HOLMER L E, HU Y Z, et al. First report of brachiopods with soft parts from the Lower Cambrian Latham Shale (Series 2, Stage 4), California [J]. Science Bulletin, 2020, 65(18): 1543-1546.
DUAN X L, BETTS M J, HOLMER L E, et al. Early Cambrian (Stage 4) brachiopods from the Shipai Formation in the three Gorges area of South China [J]. Journal of Paleontology, 2021, 95(3): 497-526.
DUAN X L, LIANG Y, HOLMER L E, et al. First report of acrotretoid brachiopod shell beds in the lower Cambrian (Stage 4) Guanshan Biota of eastern Yunnan, South China [J]. Journal of Paleontology, 2020, 95(1): 40-55.
CHEN F Y, BROCK G A, ZHANG Z L, et al. Brachiopod-dominated communities and depositional environment of the Guanshan Konservat-Lagerstätte, eastern Yunnan, China [J]. Journal of the Geological Society, 2021, 178: jgs2020-043.
ZHAO F C, ZHU M Y, HU S X. Community structure and composition of the Cambrian Chengjiang biota [J]. Science China Earth Sciences, 2010, 53(12): 1784-1799.
MA Q F, FENG Q L, YE Y, et al. Palaeoecological assemblages of the lower Cambrian Shuijingtuo Biota from the three Gorges area and implications for co-evolution of environments and life [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 566: 110193.
TOPPER T P, GUO J F, CLAUSEN S, et al. Reply to ‘Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella’ [J]. Nature Communications, 2020, 11(1): 1287.
SUN Z X, ZHAO F C, ZENG H, et al. The middle Cambrian Linyi Lagerstätte from the North China Craton: A new window on Cambrian evolutionary fauna [J]. National Science Review, 2022, 9(7): nwac069.
胡亚洲. 华北寒武系第二统-苗岭统(猴家山组-张夏组)底质演化及微型骨骼化石 [D]. 西安: 西北大学, 2022.
ZHANG Z, POUR M G, POPOV L E, et al. The oldest Cambrian trilobite-brachiopod association in South China [J]. Gondwana Research, 2021, 89: 147-167.
FU D J, TONG G, DAI T, et al. The Qingjiang biota: A Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China [J]. Science, 2019, 363(6433): 1338-1342.
GAINES R R, HAMMARLUND E U, HOU X G, et al. Mechanism for Burgess Shale-type preservation [J]. Proceedings of the National Academy of Sciences, 2012, 109(14): 5180-5184.
HARPER D A T, HAMMARLUND E U, TOPPER T P, et al. The Sirius Passet Lagerstätte of North Greenland: A remote window on the Cambrian Explosion [J]. Journal of the Geological Society, 2019, 176(6): 1023-1037.
HU Y Z, HOLMER L E, LIANG Y E, et al. First report of small shelly fossils from the Cambrian Miaolingian Limestones (Zhangxia and Hsuzhuang formations) in Yiyang County, Henan Province of North China [J]. Minerals, 2021, 11: 1104.
GAINES R R. Burgess shale-type preservation and its distribution in space and time [J]. The Paleontological Society Papers, 2014, 20: 123-146.
ZHANG Z L, TOPPER T P, CHEN F L, et al. Go large or go conical: Allometric trajectory of an early Cambrian acrotretide brachiopod [J]. Palaeontology, 2021, 64(5): 727-741.
USHATINSKAYA G T, KOROVNIKOV I V. Revision of the order paterinida (Brachiopoda) from the lower and middle Cambrian of the siberian platform [J]. Paleontological Journal, 2021, 55(6): 625-640.
彭进, 赵元龙, 秦琴, 等. 贵州东部寒武纪黔东世杷榔组腕足动物的新材料 [J]. 古生物学报, 2010, 49(3): 365-379.
PENG J, ZHAO Y L, QIN Q, et al. New material of brachiopods from the Qiandongian (Lower Cambrian) Balang Formation, eastern Guizhou, South China [J]. Acta Palaeontologica Sinica, 2010 (3): 365-379.
张兴亮. 寒武纪大爆发的过去、现在与未来[J]. 古生物学报, 2021, 60(1): 10-24.
ZHANG X L. Cambrian Explosion: Past, present, and future[J]. Acta Palaeontologica Sinica, 2021, 60(1): 10-24.
KNOLL A H. Biomineralization and evolutionary history[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 329-356.
LI L Y, TOPPER T P, BETTS M J, et al. Calcitic shells in the aragonite sea of the earliest Cambrian [J]. Geology, 2023, 51(1): 8-12.
YUN H, ZHANG X L, BROCK G A, et al. Biomineralization of the Cambrian chancelloriids [J]. Geology, 2021, 49(6): 623-628.
RIDING R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition [J]. Geobiology, 2006, 4(4): 299-316.
SKOVSTED C B, HOLMER L E. The Early Cambrian [Botomian] stem group brachiopod Mickwitzia from Northeast Greenland [J]. Acta Palaeontologica Polonica, 2003, 48(1): 1-20.
WOOD R, IVANTSOV A Y, ZHURAVLEV A Y. First macrobiota biomineralization was environmentally triggered [J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1851): 1-7.
MURDOCK D J E. The ‘biomineralization toolkit’ and the origin of animal skeletons [J]. Biological Reviews of the Cambridge Philosophical Society, 2020, 95(5): 1372-1392.
SPERLING E A, FRIEDER C A, RAMAN A V, et al. Oxygen, ecology, and the Cambrian radiation of animals [J]. Proceedings of the National Academy of Sciences, 2013, 110(33): 13446-13451.
CARTWRIGHT J H E, CHECA A G, VENDRASCO M J. Arms and the mollusc: An evolutionary arms race has produced armor based on molluscan biomineralization [J]. MRS Bulletin, 2023, 49: 1-9.
BICKNELL R D C, HOLMES J D, EDGECOMBE G D, et al. Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy [J]. Proceedings of the Royal Society B: Biological Sciences, 2021, 288(1943): 20202075.
华洪, 蔡耀平, 闵筱, 等. 新元古代末期高家山生物群的生态多样性 [J]. 地学前缘, 2020, 27(6): 28-46.
HUA H, CAI Y P, MIN X, et al. Ecological diversity in the terminal Ediacaran Gaojiashan biota [J]. Earth Science Frontiers, 2020, 27(6): 28-46.
TAYLOR P D, VINN O, WILSON M A. Evolution of biomineralization in 'Lophophorates' [J]. Special Papers in Palaeontology, 2010, 84: 317-333.
BUDD A, MCDOUGALL C, GREEN K, et al. Control of shell pigmentation by secretory tubules in the abalone mantle[J]. Frontiers in Zoology, 2014, 11(1): 1-9.
ZHANG Z L, ZHANG Z F, HOLMER L E, et al. Diversity and evolutionary growth of biomineralized columns in early Cambrian phosphatic-shelled brachiopods [J]. bioRxiv, 2023: 543202.
VINN O. Biomineralization in polychaete annelids: A review [J]. Minerals, 2021, 11(10): 1151.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构