浏览全部资源
扫码关注微信
西北大学 生命科学学院/西部资源生物与现代生物技术教育部重点实验室,陕西 西安 710069
肖悦,女,从事微生物相关研究,xiaoyue_xy2@163.com。
陈林,男,博士,讲师,从事微生物基因功能、应用微生物等相关研究,chenlin@nwu.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2024-08-10,
移动端阅览
肖悦, 王冲, 司玉洁, 等. 铜绿假单胞菌
XIAO Yue, WANG Chong, SI Yujie, et al. Trimethoprim resistance in
肖悦, 王冲, 司玉洁, 等. 铜绿假单胞菌
XIAO Yue, WANG Chong, SI Yujie, et al. Trimethoprim resistance in
耐药铜绿假单胞菌(PAO1)在临床感染过程中造成非常棘手的问题,研究其耐药机制有助于临床的治疗。研究结果表明,相对于野生型,Δ
prtN
表现出明显的甲氧苄啶(Tmp)抗性。为了了解其抗性出现的机理,测定了Tmp作用靶点
folA
的表达情况。相比于PAO1
folA
在Δ
prtN
中的表达并未升高,反而有所下降。进一步研究发现,PrtN调控的S型绿脓杆菌素基因和
prtN
的双突变体对Tmp的抗性稍有降低,而脂多糖缺陷菌株Δ
wbpL
对Tmp的抗性略有升高。在Δ
prtN
中活性氧(ROS)相关基因(
oxyR
,
katA
,
ahpC
)的表达水平、生物被膜及外排泵相关抗生素抗性检测结果都显示与野生型无显著性差异。综上,
prtN
基因突变引起的Tmp抗性可能是通过PrtN调控S型绿脓杆菌素及脂多糖相关靶标作用的结果。
Antibiotic-resistant
Pseudomonas aeruginosa
(PAO1) poses a significant challenge in clinical infections
highlighting the importance of studying its resistance mechanisms for improving clinical treatments. Our study found that the Δ
prtN
exhibited significant resistance to tr
imethoprim (Tmp) compared to the wild type. To elucidate the underlying mechanism of this resistance
we assessed the expression of
folA
the target of Tmp. Interestingly
folA
expression in Δ
prtN
was not elevated
instead but rather decreased compared to the PAO1 strain. Further investigations revealed that a double mutant lacking both the PrtN-regulated S type pyocin biosynthesis gene and
prtN
exhibited slightly reduced Tmp resistance. In contrast
the lipopolysaccharide-deficient strain Δ
wbpL
showed slightly increased Tmp resistance. In Δ
prtN
the expression levels of reactive oxygen species(ROS)-related genes (
oxyR
katA
ahpC
)
biofilm formation
and antibiotic resistance associated with efflux pumps showed no significant difference compared to the wild type. In conclusion
the Tmp resistance observed in the
prtN
mutant is likely due to the regulatory effects of PrtN on S-type pyocins and lipopolysaccharide-related targets.
绿脓杆菌素prtN甲氧苄啶脂多糖ROS
pyocinprtNtrimethoprimLPSROS
MICHEL-BRIAND Y, BAYSSE C. The pyocins of Pseudomonas aeruginosa[J]. Biochimie, 2002, 84(5/6): 499-510.
SUN Z Y, SHI J, LIU C, et al. PrtR homeostasis contributes to Pseudomonas aeruginosa pathogenesis and resistance against ciprofloxacin [J]. Infection and Immunity, 2014, 82(4): 1638-1647.
RICE L B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE [J]. The Journal of Infectious Diseases, 2008, 197(8): 1079-1081.
CAMMARATA M, THYER R, LOMBARDO M, et al. Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates [J]. Chemical Science, 2017, 8(5): 4062-4072.
GIROUX X, SU W L, BREDECHE M F, et al. Maladaptive DNA repair is the ultimate contributor to the death of trimethoprim-treated cells under aerobic and anaerobic conditions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): 11512-11517.
HUOVINEN P. Trimethoprim resistance [J]. Antimicrobial Agents and Chemotherapy, 1987, 31(10): 1451-1456.
ABDIZADEH H, TAMER Y T, ACAR O, et al. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance [J]. Physical Chemistry Chemical Physics, 2017, 19(18): 11416-11428.
BROCHET M, COUVÉ E, ZOUINE M, et al. A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae[J]. Journal of Bacteriology, 2008, 190(2): 672-680.
KEHRENBERG C, SCHWARZ S. dfrA20, A novel trimethoprim resistance gene from Pasteurella multocida[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(1): 414-417.
LEMAY-ST-DENIS C, DIWAN S S, PELLETIER J N. The bacterial genomic context of highly trimethoprim-resistant DfrB dihydrofolate reductases highlights an emerging threat to public health [J]. Antibiotics (Basel, Switzerland), 2021, 10(4): 433.
LI C C, HU R, HUA X M, et al. Construction and functional verification of size-reduced plasmids based on TMP resistance gene dfrB10[J]. Microbiology Spectrum, 2023, 11(6): e0120623.
FLEMING M P, DATTA N, GRÜNEBERG R N. Trimethoprim resistance determined by R factors [J]. British Medical Journal, 1972, 1(5802): 726-728.
LI L, ZHANG M G, WANG W J, et al. Identification and characterization of two novel ISCR1-associated genes, dfrA42 and dfrA43, encoding trimethoprim-resistant dihydrofolate reductases [J]. Antimicrobial Agents and Chemotherapy, 2021, 65(5): e02010.
YAN R, HU S, MA N, et al. Regulatory effect of DNA topoisomerase I on T3SS activity, antibiotic susceptibility and quorum-sensing-independent pyocyanin synthesis in Pseudomonas aeruginosa[J]. International Journal of Molecular Sciences, 2019, 20(5): 1116.
HOANG T T, KARKHOFF-SCHWEIZER R R, KUTCHMA A J, et al. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants [J]. Gene, 1998, 212(1): 77-86.
DUAN K M, DAMMEL C, STEIN J, et al. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication [J]. Molecular Microbiology, 2003, 50(5): 1477-1491.
PROSKURNICKA A, ZUPNIK K, BAKUIA Z, et al. Drug susceptibility profiling of prototheca species isolated from cases of human protothecosis [J]. Antimicrobial Agents and Chemotherapy, 2023, 67(4): e0162722.
CHEN H, HU J, CHEN P R, et al. The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13586-13591.
SAISING J, SINGDAM S, ONGSAKUL M, et al. Lipase, protease, and biofilm as the major virulence factors in staphylococci isolated from acne lesions [J]. Bioscience Trends, 2012, 6(4): 160-164.
PEETERS E, NELIS H J, COENYE T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates [J]. Journal of Microbiological Methods, 2008, 72(2): 157-165.
ALEKSHUN M N, LEVY S B. Molecular mechanisms of antibacterial multidrug resistance [J]. Cell, 2007, 128(6): 1037-1050.
GATTU R, RAMESH S S, RAMESH S. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance [J]. Microbial Pathogenesis, 2024, 188: 106543.
KÖHLER T, KOK M, MICHEA-HAMZEHPOUR M, et al. Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa [J]. Antimicrobial Agents and Chemotherapy, 1996, 40(10): 2288-2290.
PAN Y P, XU Y H, WANG Z X, et al. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa [J]. Archives of Microbiology, 2016, 198(6): 565-571.
PURSSELL A, POOLE K. Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa [J]. Microbiology (Reading, England), 2013, 159(10): 2058-2073.
DE KIEVIT T R, PARKINS M D, GILLIS R J, et al. Multidrug efflux pumps: Expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms [J]. Antimicrobial Agents and Chemotherapy, 2001, 45(6): 1761-1770.
BRAZAS M D, HANCOCK R E. Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa [J]. Antimicrobial Agents and Chemotherapy, 2005, 49(8): 3222-3227.
WAITE R D, CURTIS M A. Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms [J]. Journal of Bacteriology, 2009, 191(4): 1349-1354.
MEADOW P M, WELLS P L. Receptor sites for R-type pyocins and bacteriophage E79 in the core part of the lipopolysaccharide of Pseudomonas aeruginosa PAC1 [J]. Journal of General Microbiology, 1978, 108(2): 339-343.
KÖHLER T, DONNER V, VAN DELDEN C. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2010, 192(7): 1921-1928.
ROCCHETTA H L, BURROWS L L, PACAN J C, et al. Three rhamnosyltransferases responsible for assembly of the A-band D-rhamnan polysaccharide in Pseudomonas aeruginosa: A fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis [J]. Molecular Microbiology, 1998, 28(6): 1103-1119.
FRIEDMAN L, KOLTER R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms [J]. Molecular Microbiology, 2004, 51(3): 675-690.
PENTERMAN J, SINGH P K, WALKER G C. Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa [J]. Journal of Bacteriology, 2014, 196(18): 3351-3359.
PONTES M H, GROISMAN E A. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica[J]. Science Signaling, 2019, 12(592): eaax3938.
CAG Y, CASKURLU H, FAN Y, et al. Resistance mechanisms [J]. Annals of Translational Medicine, 2016, 4(17): 326.
COLEMAN S R, BLIMKIE T, FALSAFI R, et al. Multidrug adaptive resistance of Pseudomonas aeruginosa swarming cells [J]. Antimicrobial Agents and Chemotherapy, 2020, 64(3): e01999.
SIKDAR R, ELIAS M H. Evidence for complex interplay between quorum sensing and antibiotic resistance in Pseudomonas aeruginosa[J]. Microbiology Spectrum, 2022, 10(6): e0126922.
SANGURDEKAR D P, ZHANG Z, KHODURSKY A B. The association of DNA damage response and nucleotide level modulation with the antibacterial mechanism of the anti-folate drug trimethoprim [J]. BMC Genomics, 2011, 12: 583.
MEYLAN S, PORTER C B M, YANG J H, et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control [J]. Cell Chemical Biology, 2017, 24(2): 195-206.
LOPATKIN A J, STOKES J M, ZHENG E J, et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate [J]. Nature Microbiology, 2019, 4(12): 2109-2117.
CONLON B P, ROWE S E, GANDT A B, et al. Persister formation in Staphylococcus aureus is associated with ATP depletion [J]. Nature Microbiology, 2016, 1: 16051.
LOBRITZ M A, BELENKY P, PORTER C B, et al. Antibiotic efficacy is linked to bacterial cellular respiration [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8173-8180.
QI W, JONKER M J, DE LEEUW W, et al. Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli [J]. iScience, 2023, 26(12): 108373.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构