浏览全部资源
扫码关注微信
1.低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
2.长庆油田油气工艺研究院,陕西 西安 710018
3.陕西省生物技术重点实验室,陕西 西安 710069
4.西北大学 生命科学学院,陕西 西安 710069
李岩,男,高级工程师,从事环保工程相关研究,liyan001_cq@petrochina.com.cn。
黄萱,女,副教授,从事植物抗性分子生物学研究,xuanhuang@nwu.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2024-07-30,
移动端阅览
李岩, 李云昊, 李雅茹, 等. 饱和烷烃处理下紫花苜蓿(
LI Yan, LI Yunhao, LI Yaru, et al. Analysis of transcriptome data of
李岩, 李云昊, 李雅茹, 等. 饱和烷烃处理下紫花苜蓿(
LI Yan, LI Yunhao, LI Yaru, et al. Analysis of transcriptome data of
为探究紫花苜蓿在石油污染下的耐受机理,采用超声碎促溶的方法,将3种有机物(十二烷、十六烷和二十四烷)配置成质量分数均为1%的混合溶液,模拟饱和烷烃污染对紫花苜蓿幼苗进行处理,分别对污染0,6
24 h的植株取样进行转录组学分析,共获得1 431个差异表达基因(DEGs)。GO富集分析表明,这些DEGs主要涉及蛋白结合、代谢途径和催化活性等;KEGG富集分析表明,DEGs主要富集到植物病原体相互作用、MAPK信号通路和光合生物碳固定途径等。qRT-PCR验证转录组结果可靠。研究结果为研究植物降解和耐受原油中饱和石油烃污染机制原理及后续筛选和培育耐石油污染植物提供理论依据。
To explore the tolerance mechanism of
Medicago sativa
under oil pollution
this study adopted the method of ultrasonic crushing and solubilization to prepare a mixed solution of three organic compounds (Dodecane
n-Hexadecane
and n-Tetracosane) at a concentration of 1% to simulate saturated alkanes and treat
Medicago sativa
seedlings. Samples were taken from plants exposed to pollution for 0h
6h
and 24h for transcriptomic analysis. The results showed that a total of 1431 DEGs were obtained. GO enrichment analysis indicated that these DEGs were mainly involved in protein binding
metabolic pathways
and catalytic activity. KEGG enrichment analysis showed that DEGs were mainly enriched in plant pathogen interaction
MAPK signaling pathway and photosynthetic biologica
l carbon fixation pathway. qRT-PCR was further used to verify the reliability of the results. This study provides theoretical basis for exploring the mechanism of plant degradation and tolerance of saturated petroleum hydrocarbon in crude oil pollution
as well as subsequent screening and cultivation of petroleum-tolerant plants through transcriptome analysis of
Medicago sativa
treated with saturated alkanes.
石油烃污染紫花苜蓿转录组差异表达基因
petroleum hydrocarbon pollutantsMedicago sativatranscriptomedifferentially expressed genes
KULYUKHIN S A, KOMAROV V B, SELIVERSTOV A, et al. Assessment of the applicability of an iron-containing composite for the purification of transformer oils[J]. Theoretical Foundations of Chemical Engineering, 2020, 54(5): 1057-1060.
HUSSAIN F, KHAN A H, HUSSAIN I, et al. Soil conditioners improve rhizodegradation of aged petroleum hydrocarbons and enhance the growth of Lolium multiflorum[J]. Environmental Science and Pollution Research, 2021, 29: 9097-9109
胡玲君. 植物修复技术在土壤污染治理中的应用[J]. 黑龙江环境通报, 2022, 35(2): 80-81.
HU L J. Application of phytoremediation technology in soil pollution control[J]. Heilongjiang Environmental Bulletin, 2022, 35(2): 80-81.
HOU J, WANG Q, LIU W, et al. Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil[J]. Science of the Total Environment, 2021, 792: 148411.
W<inline-formula><alternatives><graphic specific-use="print" xlink:href="media/1000-274X-54-05-011-I001.jpg"/><graphic specific-use="big" xlink:href="alternativeImage/1000-274X-54-05-011-I001.jpg"/><graphic specific-use="small" xlink:href="alternativeImage/1000-274X-54-05-011-I001c.jpg"/></alternatives></inline-formula>ÓKA D, PLACEK A, SMOL M, et al. The efficiency and economic aspects of phytoremediation technology using Phalaris arundinacea L. and Brassica napus L. combined with compost and nano SiO2 fertilization for the removal of PAH’s from soil[J]. Journal of Enrironmental Management, 2019, 234(15): 311-319.
徐艳, 史高琦. 王曙光,等.紫花苜蓿对石油污染土壤的修复响应[J]. 环境科学与技术, 2018, 41(增刊2): 25-28.
XU Y, SHI G Q, WANG S G, et al. Remediation response of Medicago sativa to oil contaminated soil[J]. Environmental Science and Technology, 2018, 41(S2): 25-28.
CAI B, MA J, YAN G X, et al. Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil [J]. Biochemical Engineering Journal, 2016, 112: 170-177.
孟楠, 王萌, 陈莉, 等. 不同草本植物间作对Cd污染土壤的修复效果[J]. 中国环境科学, 2018, 38(7): 2618-2624.
MENG N, WANG M, CHEN L, et al. Remediation effect of different herbaceous plants intercropping on Cd contaminated soil[J]. China Environmental Science, 2018, 38(7): 2618-2624.
LIU W X, HOU J Y, WANG Q L, et al. Collection and analysis of rootexudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil [J]. Plant and Soil, 2015, 389(1/2): 109-119.
王运涛, 孟德斌, 于林清, 等. 8个紫花苜蓿材料在呼和浩特地区的抗寒性和生产性能比较[J]. 中国草地学报, 2022, 44(6): 60-66.
WANG Y T, MENG D B, YU L Q, et al. Comparison of cold resistance and production performance of eight Medicago sativa materials in Hohhot Area [J]. Chinese Journal of Grassland, 2022, 44(6): 60-66.
孟宣辰, 马鹏程, 马杰, 等. 黄土高原半干旱区紫花苜蓿覆膜垄沟和施肥效应研究[J]. 草地学报, 2021, 14(6): 5-7.
MENG X C, MA P C, MA J, et al. Effects of mulching ridge and furrow and fertilization on alfalfa in the semi-arid region of the Loess Plateau[J]. Journal of Grassland, 2021, 14(6): 5-7.
边佳辉, 刘白扬, 李宗英, 等. 紫花苜蓿基因工程改良研究进展[J]. 草业科学, 2020, 37(1): 139-155.
BIAN J H, LIU B Y, LI Z Y, et al. Research progress on genetic engineering improvement of alfalfa[J]. Pratacultural Science, 2020, 37(1): 139-155.
SINGER S D, HANNOUFA A, ACHARYA S. Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment[J]. Plant Cell Environ, 2018, 41(9): 1955-1971.
李会彬, 王丽宏, 边秀举, 等. 河北省紫花苜蓿农药残留状况调查与分析[J]. 河北农业科学, 2020, 24(1): 61-64.
LI H B, WANG L H, BIAN X J, et al. Investigation and analysis of pesticide residues in Medicago sativa in Hebei Province [J]. Journal of Hebei Agricultural Sciences, 2020, 24(1): 61-64.
CHEN L, BEIYUAN J, HU W, et al. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review[J]. Chemosphere, 2022, 293: 133577.
ZHANG F B, HUANG L H, YONG M Y, et al. Rainfall simulation experiments indicate that biochar addition enhances erosion of loess-derived soils[J]. Land Degradation & Development, 2019, 30: 2272-2286.
王天楚, 段士鑫, 吴怀欣, 等. 基于相关分析和主成分分析的紫花苜蓿抗镉胁迫研究[J]. 南方农业学报, 2023, 54(10): 2878-2887.
WANG T C, DUAN S X, WU H X, et al. Study on cadmium stress resistance of alfalfa based on correlation analysis and principal component analysis [J]. Journal of Southern Agriculture, 2023, 54(10): 2878-2887.
熊军波, 杨青川, 蔡化, 等. 紫花苜蓿根响应盐胁迫的比较蛋白质组学分析[J]. 湖北农业科学, 2015, 54(21): 5422-5428.
XIONG J B, YANG Q C, CAI H, et al. Comparative proteomics analysis of alfalfa roots in response to salt stress [J]. Hubei Agricultural Sciences, 2015, 54(21): 5422-5428.
GAO Q, YU R, MA X, et al. Transcriptome analysis for salt-responsive genes in two different alfalfa (Medicago sativa L.) cultivars and functional analysis of MsHPCA1[J]. Plants (Basel), 2024, 13(8): 1073-1091.
ZHANG C, SHI S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress[J]. Front Plant Science, 2018, 9: 753011.
于浩然, 贾玉山, 刘鹰昊, 等. 土壤盐碱度和留茬高度对苜蓿农艺性状及干草品质的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(1): 33-39.
YU H R, JIA Y S, LIU Y H, et al. Effects of soil salinity and stubble height on agronomic traits and hay quality of alfalfa [J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(1): 33-39.
闫志强, 陈银萍, 蘧苗苗, 等. 镉胁迫对紫花苜蓿幼苗生理特性和镉富集的影响[J]. 广西植物, 2019, 39(2): 218-227.
YAN Z Q, CHEN Y P, QU M M, et al. Effects of cadmium stress on physiological characteristics and cadmium enrichment in alfalfa seedlings [J]. Guihaia, 2019, 39(2): 218-227.
曹婧, 李向林, 万里强. 锰胁迫对紫花苜蓿生理和生长特性的影响[J]. 中国草地学报, 2019, 41(6): 15-22.
CAO J, LI X L, WAN L Q. Effects of manganese stress on physiological and growth characteristics of alfalfa[J]. Chinese Journal of Grassland, 2019, 41(6): 15-22.
赵颖. 基于转录组分析揭示一氧化氮调控紫花苜蓿响应干旱胁迫的机理[D]. 兰州: 甘肃农业大学, 2020.
LUO D, ZHOU Q, WU Y G, et al. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.)[J]. BMC Plant Biology, 2019, 19(1): 32: 1-20.
WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: A revolutionary tool for transcriptomics.[J]. Nature Reviews Genetics, 2009, 10(1): 57-63.
黄申, 闫茗熠, 陈梦月, 等. 基于转录组测序和RT-qPCR技术的烟草糖酯合成基因挖掘[J]. 轻工学报, 2023, 38(6): 78-84.
HUANG S, YAN M Y, CHEN M Y, et al. Mining of tobacco sugar ester synthesis genes based on transcriptome sequencing and RT-qPCR technology [J]. Journal of Light Industry, 2023, 38(6): 78-84.
魏春梅, 栾威, 代娅, 等. 比较转录组研究钛离子对紫花苜蓿基因表达的影响[J]. 应用与环境生物学报, 2019, 25(1): 117-127.
WEI C M, LUAN W, DAI Y, et al. Comparative transcriptome study on the effects of titanium ions on gene expression in alfalfa [J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(1): 117-127.
YAN H F, MA G H, JAIME A, et al. Genome-wide identification and analysis of NAC transcription factor family in twodiploid wild relatives of cultivated sweet potato uncovers potentia lNAC genes related to drought tolerance[J]. Front Genet, 2021, 12: 744220.
JU Y, YUE X, MIN Z, et al. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 146: 98-111.
李晓宇, 李文颖, 杨成超. 镉胁迫下中辽1号杨转录组分析[J]. 西北农林科技大学学报(自然科学版), 2024, 52(6): 29-39.
LI X Y, LI W Y, YANG C C. Transcriptome analysis of Zhongliao No.1 poplar under cadmium stress [J]. Journal of Northwest A&F University (Natural Science Edition), 2024, 52(6): 29-39.
FENG X, XU Y, PENG L, et al. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2019, 240: 153004.
陆程张. Na2CO3胁迫下玉米苗期根部转录组表达谱分析[D]. 延吉: 延边大学, 2021.
毕博远, 韩凤朋. 黄土高原不同种植年限紫花苜蓿根系分泌物GC-MS分析[J]. 草地学报, 2018, 26(3): 611-617.
BI B Y, HAN F P. GC-MS analysis of root exudates from alfalfa planted in the Loess Plateau for different years[J]. Acta Agrestia Sinica, 2018, 26(3): 611-617.
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515.
LI B, DEWEY C N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 1-16.
朱艳霞, 姜建萍, 郭晓云, 等. 药用植物青葙全长转录组测序分析 [J]. 中国现代中药, 2023, 25(7): 1463-1472.
ZHU Y X, JIANG J P, GUO X Y, et al. Full-length transcriptome sequencing analysis of the medicinal plant Celosia argentea [J]. Modern Chinese Medicine, 2023, 25(7): 1463-1472.
MENG A, WEI S, YAN L, et al. Bioniformatic analysis and validation of ardiac hypertrophy-related genes [J]. Zenodo, 2023, 42(2): 159-167.
LIU L, LIU D, WANG Z, et al. Exogenous allantoin improves the salt tolerance of sugar beet by increasing putrescine metabolism and antioxidant activities[J]. Plant Physiology and Biochemistry, 2020, 154: 699-713.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构