浏览全部资源
扫码关注微信
1.西北大学 生命科学学院,陕西 西安 710069
2.西北大学 医学院,陕西 西安 710069
关锋,男,博士,教授,博士生导师,从事肿瘤糖生物学研究,guanfeng@nwu.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2024-08-06,
移动端阅览
关锋, 丰晶晶, 卫玮, 等. 平分型糖链的结构与功能[J]. 西北大学学报(自然科学版), 2024,54(5):840-846.
GUAN Feng, FENG Jingjing, WEI Wei, et al. The structure and function of bisecting GlcNAc[J]. Journal of Northwest University (Natural Science Edition), 2024,54(5):840-846.
关锋, 丰晶晶, 卫玮, 等. 平分型糖链的结构与功能[J]. 西北大学学报(自然科学版), 2024,54(5):840-846. DOI: 10.16152/j.cnki.xdxbzr.2024-05-006.
GUAN Feng, FENG Jingjing, WEI Wei, et al. The structure and function of bisecting GlcNAc[J]. Journal of Northwest University (Natural Science Edition), 2024,54(5):840-846. DOI: 10.16152/j.cnki.xdxbzr.2024-05-006.
平分型N-乙酰氨基葡萄糖GlcNAc(Bisecting N-acetylglucosamine,bisecting GlcNAc)结构是指GlcNAc以β1,4-连接的方式连接到五糖核心的甘露糖(Man)上,是一种特殊的N糖基化修饰。平分型GlcNAc修饰参与多种生物过程,如细胞黏附、受精和胎儿发育、神经发生、免疫反应和肿瘤发展等。主要介绍平分型GlcNAc结构的形成过程,概述平分型GlcNAc修饰在神经系统、免疫反应、肿瘤发展和转移的生物学功能,并总结了解析平分型GlcNAc结构的技术进展,为相应生物学研究及药物开发提供科学参考。
The bisecting N-acetylglucosamine (GlcNAc) structure
characterized by β1
4-linked GlcNAc attached to the core β-mannose residue
represents a distinctive form of N-glycosylation modification. Bisecting GlcNAc modification is implicated in numerous biological processes such as cell adhesion
fertilization and embryonic development
neurogenesis
immune responses
and tumorigenesis. This review elucidates the formation mechanisms of bisecting GlcNAc structure and highlights its diverse biological functions in the nervous system
immune response
tumor metastasis and development. Furthermore
it provides an overview of the technological advances in analyzing bisecting GlcNAc structure
providing scientific references for corresponding biological research and drug development.
平分型N-乙酰氨基葡萄糖MGAT3N聚糖质谱
bisecting GlcNAcMGAT3N-glycanmass
KOE J C, PARKER S J. The posttranslational regulation of amino acid transporters is critical for their function in the tumor microenvironment [J]. Curr Opin Biotechnol, 2024, 85: 103022.
LIN Y, LUBMAN D M. The role of N-glycosylation in cancer [J]. Acta Pharmaceutica Sinica B, 2024, 14(3): 1098-1110.
ZHOU H M, LI Y, LIU B, et al. Downregulation of miR-224 and let-7i contribute to cell survival and chemoresistance in chronic myeloid leukemia cells by regulating ST3GAL IV expression [J]. Gene, 2017, 626: 106-118.
XIAO J, GAO Y, YANG F M, et al. β1, 6 GlcNAc branches-modified protein tyrosine phosphatase alpha enhances its stability and promotes focal adhesion formation in MCF-7 cells [J]. Biochem Biophys Res Commun, 2017, 482(4): 1455-1461.
NISHIKAWA A, IHARA Y, HATAKEYAMA M, et al. Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine: Beta-D-mannoside beta-1, 4N-acetylglucosaminyltransferase III from rat kidney [J]. J Biol Chem, 1992, 267(25): 18199-18204.
MIYOSHI E, UOZUMI N, NODA K, et al. Expression of alpha1-6 fucosyltransferase in rat tissues and human cancer cell lines [J]. Int J Cancer, 1997, 72(6): 1117-1121.
NAKANO M, MISHRA S K, TOKORO Y, et al. Bisecting GlcNAc is a general suppressor of terminal modification of N-glycan [J]. Mol Cell Proteomics, 2019, 18(10): 2044-2057.
KIZUKA Y, TANIGUCHI N. Enzymes for N-glycan branching and their genetic and nongenetic regulation in cancer [J]. Biomolecules, 2016, 6(2): 25-46.
YAMADERA S, NAKAMURA Y, INAGAKI M, et al. Linagliptin inhibits lipopolysaccharide-induced inflammation in human U937 monocytes [J]. Inflammation and Regeneration, 2018, 38: 13-20.
NAGAE M, KANAGAWA M, MORITA-MATSUMOTO K, et al. Atomic visualization of a flipped-back conformation of bisected glycans bound to specific lectins [J]. Scientific Reports, 2016, 6: e22973.
PRADEEP P, KANG H, LEE B. Glycosylation and behavioral symptoms in neurological disorders [J]. Translational Psychiatry, 2023, 13(1): 154-164.
CHEN Q S, TAN Z Q, GUAN F, et al. The essential functions and detection of bisecting GlcNAc in cell biology[J]. Frontiers in Chemistry, 2020, 8: 511-521.
SHIGETA M, SHIBUKAWA Y, IHARA H, et al. beta1, 4-N-Acetylglucosaminyltransferase III potentiates beta1 integrin-mediated neuritogenesis induced by serum deprivation in Neuro2a cells[J]. Glycobiology, 2006, 16(6): 564-571.
KIZUKA Y, TANIGUCHI N. Neural functions of bisecting GlcNAc[J]. Glycoconj J, 2018, 35(4): 345-351.
GAUNITZ S, TJERNBERG L O, SCHEDIN-WEISS S. The N-glycan profile in cortex and hippocampus is altered in Alzheimer disease[J]. J Neurochem, 2021, 159(2): 292-304.
KIZUKA Y, KITAZUME S, TANIGUCHI N. N-glycan and Alzheimer’s disease[J]. Biochim Biophys Acta, Gen Subj, 2017, 1861(10): 2447-2454.
SCHEDIN-WEISS S, GAUNITZ S, SUI P, et al. Glycan biomarkers for Alzheimer disease correlate with T-tau and P-tau in cerebrospinal fluid in subjective cognitive impairment[J]. FEBS J, 2020, 287(15): 3221-3234.
YOSHIMURA M, IHARA Y, OHNISHI A, et al. Bisecting N-acetylglucosamine on K562 cells suppresses natural killer cytotoxicity and promotes spleen colonization[J]. Cancer Res, 1996, 56(2): 412-418.
HE X, WANG B, DENG W, et al. Impaired bisecting GlcNAc reprogrammed M1 polarization of macrophage [J]. Cell Communication and Signaling: CCS, 2024, 22(1): 73-83.
SHATHILI A M, BANDALA-SANCHEZ E, JOHN A, et al. Specific sialoforms required for the immune suppressive activity of human soluble CD52[J]. Frontiers in Immunology, 2019, 10: 1967-1979.
DEKKERS G, PLOMP R, KOELEMAN C A M, et al. Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans[J]. Scientific Reports, 2016, 6: 36964.
YANG S, CUI M, LIU Q F, et al. Glycosylation of immunoglobin G in tumors: Function, regulation and clinical implications[J]. Cancer Letter, 2022, 549: 215902.
PAN H Y, WU Z Y, ZHANG H P, et al. Identification and validation of IgG N-glycosylation biomarkers of esophageal carcinoma[J]. Frontiers in Immunology, 2023, 14: 981861.
SELMAN M H J, NIKS E H, TITULAER M J, et al. IgG fc N-glycosylation changes in Lambert-Eaton myasthenic syndrome and myasthenia gravis[J]. J Proteome Res, 2011, 10(1): 143-152.
SONG W L, LIANG C X, SUN Y H, et al. Expression of GnT-III decreases chemoresistance via negatively regulating P-glycoprotein expression: Involvement of the TNFR2-NF-κB signaling pathway[J]. J Biol Chem, 2023, 299(4): 103051.
CHENG L, CAO L, WU Y, et al. Bisecting N-acetylglucosamine on EGFR inhibits malignant phenotype of breast cancer via down-regulation of EGFR/Erk signaling[J]. Frontiers in Oncology, 2020, 10(1): 929-942.
TAN Z Q, CAO L, WU Y R, et al. Bisecting GlcNAc modification diminishes the pro-metastatic functions of small extracellular vesicles from breast cancer cells [J]. Journal of Extracellular Vesicles, 2020, 10(1): e12005.
SHENG Y, YOSHIMURA M, INOUE S, et al. Remodeling of glycoconjugates on CD44 enhances cell adhesion to hyaluronate, tumor growth and metastasis in B16 melanoma cells expressing beta1, 4-N-acetylglucosaminyltransferase III [J]. Int J Cancer, 1997, 73(6): 850-858.
FENG J J, WANG Y, LI B X, et al. Loss of bisecting GlcNAcylation on MCAM of bone marrow stoma determined pro-tumoral niche in MDS/AML [J]. Leukemia, 2023, 37(1): 113-121.
RAVIDÀ A, CWIKLINSKI K, ALDRIDGE A M, et al. Fasciola hepatica surface tegument: Glycoproteins at the interface of parasite and host[J]. Mol Cell Proteomics, 2016, 15(10): 3139-3153.
CHEN Q, PANG P C, COHEN M E, et al. Evidence for differential glycosylation of trophoblast cell types[J]. Mol Cell Proteomics, 2016, 15(6): 1857-1866.
ZOU G Z, OCHIAI H, HUANG W, et al. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor[J]. J Am Chem Soc, 2011, 133(46): 18975-18991.
ALLAM H, AOKI K, BENIGNO B B, et al. Glycomic analysis of membrane glycoproteins with bisecting glycosylation from ovarian cancer tissues reveals novel structures and functions[J]. J Proteome Res, 2015, 14(1): 434-446.
NAGAE M, SOGA K, MORITA-MATSUMOTO K, et al. Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold[J]. Glycobiology, 2014, 24(4): 368-378.
DANG L Y, SHEN J C, ZHAO T, et al. Recognition of Bisecting N-glycans on intact glycopeptides by two characteristic ions in tandem mass spectra[J]. Anal Chem, 2019, 91(9): 5478-5482.
LIU M Q, ZENG W F, FANG P, et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification[J]. Nat Commun, 2017, 8(1): 438-451.
LU L C, RILEY N M, SHORTREED M R, et al. O-Pair Search with MetaMorpheus for O-glycopeptide characterization[J]. Nat Methods, 2020, 17(11): 1133-1138.
SHEN J C, JIA L, DANG L Y, et al. StrucGP: de novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy[J]. Nat Methods, 2021, 18(8): 921-929.
FANG Z, QIN H Q, MAO J W, et al. Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation[J]. Nat Commun, 2022, 13(1): 1900-1914.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构