图1 植物中鞘脂的基本结构
纸质出版日期:2024-10-25,
收稿日期:2024-08-06
移动端阅览
引用本文
阅读全文PDF
鞘脂类物质是构成植物膜系统的重要组分,在不同的植物细胞和组织中鞘脂的结构和含量分布迥异。鞘脂也是细胞内重要的信号分子,参与调控植物的程序性细胞死亡、气孔开闭、根的生长、花粉发育、植物形态建成和果实成熟与脱落等多个过程。鞘脂代谢紊乱会造成底物或者产物的积累,进而导致植物生长、发育异常。目前植物中鞘脂的研究主要通过突变体表型和鞘脂类物质的含量来评估,缺乏对精密调控网络的研究,因此有较大的研究空白亟待填补。综述了目前参与植物鞘脂代谢过程的鞘脂类物质及其相关的代谢酶类,并分类讨论了鞘脂代谢基因突变体表型和造成突变体表型的潜在原因。
Sphingolipids are essential components of plant biomembrane system with their structure and content varying significantly across different plant cells and tissues. They also function as intracellular signaling molecules, participating in the regulation of processes such as programmed cell death, stomatal open and closure, root growth, pollen development, plant morphogenesis, and fruit ripening and shedding. Disruptions in sphingolipid metabolism result in the accumulation of substrates or products, leading to abnormal plant development. Currently, research on sphingolipids in plants primarily evaluates mutant phenotype and changes of sphingolipids content. However, there are significant research gaps due to a lack of precise regulatory networks. This review summarized sphingolipids involved in plant sphingolipid metabolism and their related enzyme. It also discussed the mutant phenotype of sphingolipid metabolism related genes and the possible causes of the mutant phenotype.
鞘脂(sphingolipids)是一类结构复杂并且功能多样的脂质的总称。普遍存在于真核细胞和部分细菌的膜组分中,维持膜结构的完整性[
鞘脂在动物中的研究相对广泛,鞘脂代谢途径被扰乱会导致多种疾病的产生[
1884年,约翰·路德维希·图迪库姆(Johann Ludvig Thudichum)在动物的脑组织中发现了结构独特的脂类,因其结构像“谜一样”(sphinx),故将其命名为“sphingo”。1947年,赫伯特·卡特(Herbert Carter)和同事在研究和阐述鞘脂的结构时,提出了现在常见的鞘脂描述词“sphingolipid”[
图1 植物中鞘脂的基本结构
Fig.1 The basic structure of sphingolipids in plants
注: 图(a)和图(b)中的Z和E分别代表顺式和反式,图(e)中R1为羟基(-OH)或者N-乙酰基 (-NAc),复杂的糖基肌醇磷酸神经酰胺头部基团中Cer为神经酰胺、P为磷酸、Ins为肌醇、Glc为葡萄糖、Hex为己糖、HexA为己糖醛酸、Pen为戊糖。
植物中的长链碱基(也被称为鞘氨醇)是鞘脂的关键组分,长链碱基通常为18碳的氨基醇,一般分为两类。一类以二氢鞘氨醇(d18∶0, dihydrosphinganine)为基础骨架,其基本的特征是在C1和C3位置处各有一个羟基〔见
神经酰胺是形成高级鞘脂的骨架,由鞘氨醇C2位的氨基和脂肪酸(fatty acid, FA)的脂酰基形成酰胺键连接而成〔见
在真核生物中,鞘脂从头合成和降解的主要途径基本保守,但鞘脂结构的多样性在不同物种之间存在差异,有些鞘脂的结构修饰仅发生在植物中[
图2 植物鞘脂代谢途径
Fig.2 Sphingolipids metabolism pathways in plants
注: SPT,丝氨酸棕榈酰转移酶;KSR,3-酮基鞘氨醇还原酶;SBH,鞘氨醇羟化酶;LCB-K,鞘氨醇激酶;LCB-PP,LCB磷酸磷酸酶;LCB Δ4 DES和LCB Δ8 DES,鞘氨醇 Δ4去饱和酶和鞘氨醇 Δ8去饱和酶;LOH,神经酰胺合成酶;FAH,脂肪酸2-羟基化酶;Cer-K/ACD5,神经酰胺激酶;CDase,神经酰胺酶;GCS,葡糖神经酰胺合酶;GCD3,葡糖神经酰胺酶3;IPCS,肌醇磷酸神经酰胺合成酶;IPUT1,肌醇磷酸神经酰胺葡萄糖醛酸糖基转移酶1;GMTI,GIPC甘露糖转移酶1;GINT1,葡萄糖胺肌醇磷酸神经酰胺转移酶1;GONST1/2,高尔基体核糖体糖基转运体1或2;GIPC-PLD,GIPC特异性的磷脂酶D;NPC4,非特异性的磷脂酶C4;myriocin,多球壳菌素;FB1,伏马菌素B1;AAL,链格孢菌素;PDMP,D,L-苏氨酸-1-苯基-2-癸酰(基)氨基-3-吗啉-1-丙醇。
鞘氨醇由丝氨酸棕榈酰基转移酶(serine palmitoyl transferase, SPT)将丝氨酸和棕榈酰辅酶A缩合形成中间体3-酮基二氢鞘氨醇(3-ketosphinganine)[
神经酰胺通过神经酰胺合成酶(ceramide synthase, CerS)将鞘氨醇和脂肪酸缩合形成,目前在植物中鉴定出3个CerS〔Longevity Assurance Gene One (LAG1) Homologue 1-3, LOH 1-3〕,其中LOH1和LOH3具有合成鞘氨醇和极长链脂肪酸(very-long-chain fattyacid, VLCFAs, C20~C26)的偏好性,而LOH2主要负责含有长链脂肪酸(long-chain fatty acid, LCFAs, C16~C18)的神经酰胺的合成[
神经酰胺作为底物,与葡萄糖在葡糖神经酰胺合成酶(GlcCer synthase, GCS)的催化下形成葡糖神经酰胺[
植物鞘脂的降解主要包括神经酰胺、葡糖神经酰胺和糖基肌醇磷酸神经酰胺的降解。复杂的鞘脂最终被分解代谢为神经酰胺、鞘氨醇或者鞘氨醇-1-磷酸[
葡糖神经酰胺的分解主要依赖于葡糖神经酰胺酶(glucosylceramidase, GCD),拟南芥有4个和人类GCD同源的基因,分别是At5g49900、At1g33700、At4g10060(AtGCD3)和At3g24180[
合成或分解后的鞘脂均需要一定的介质来转运产物到达目的场所,才能发挥具体的生物学功能。前人将鞘脂的运输方式分为非囊泡运输和囊泡运输两种[
鞘脂的合成和分解途径涉及多个过程和多种酶的参与,每一步骤的扰乱都可能影响细胞中鞘脂的稳态,进而影响相应的生物学过程。SPT是鞘脂从头合成途径中第一步反应的催化酶,也是关键的限速酶[
图3 植物鞘脂稳态调控模式图
Fig.3 Sphingolipids homeostasis regulation modelin plants
注: ORM1/2,类黏膜蛋白;SPT,丝氨酸棕榈酰转移酶,LCB1、LCB2a/b是SPT的核心亚基,ssSPT是SPT的小亚基;PCD,细胞程序性死亡。
磷酸化修饰也是参与鞘脂稳态调控的一种方式。植物中鞘氨醇和神经酰胺与其磷酸化形式的衍生物之间存在代谢平衡,植物中积累鞘氨醇和神经酰胺会导致PCD,但外源施加其磷酸化形式的衍生物可以缓解PCD的表型〔见
目前关于影响植物鞘脂稳态的因素除了植物自身表达的蛋白调控外,还存在一些化学试剂干扰调控鞘脂的合成过程(见
鞘脂在细胞内的分布和富集区域可能与其功能的特异性相关。鞘脂是细胞膜的主要结构组分,但在生物膜系统中的分布并不均匀,糖基肌醇磷酸神经酰胺和葡糖神经酰胺主要富集在细胞膜的外小叶(external leaflet)中[
有研究表明细胞中可能至少有500种不同的鞘脂分子[
鞘脂类物质的结构和种类多样,在植物细胞中的含量和分布参差不齐,进而导致功能各异。当植物受到胁迫时,位于质膜上的鞘脂响应外界环境的变化,同时作为细胞内信号分子的鞘脂进一步将胁迫信号传递给下游响应的靶标来调控植物对外界环境的适应。越来越多的研究表明鞘脂可能与植物细胞中的激素之间存在密切的联系,并以细胞或组织特异性的方式调节植物的生长和发育。此外,ROS途径与鞘脂介导的PCD也具有相关性。功能多样的鞘脂在植物生长发育的不同阶段分别扮演不同的角色(见
图4 鞘脂调控拟南芥生长发育
Fig.4 Sphingolipids regulate the growth and development of Arabidopsis thaliana
注: ABA,脱落酸;SPHK,鞘氨醇激酶;PLDα1,磷脂酶D的α1亚基;GPA1,异源三聚体G蛋白的α-亚基;TOD1,碱性神经酰胺酶;GCS,葡糖神经酰胺合酶;IPUT1,肌醇磷酸神经酰胺葡萄糖醛酸糖基转移酶1;SPT,丝氨酸棕榈酰转移酶;FBR11,SPT核心亚基LCB1的等位基因;LCB2a和LCB2b,SPT核心亚基LCB2的组分;LCB1,SPT核心亚基;LOH2,神经酰胺合成酶2;GONST1,高尔基体核糖体糖基转运体1;GMTI,糖基肌醇磷酸神经酰胺甘露糖转移酶1;ALA4/5,脂质翻转酶ALA4和ALA5;SBH1/2,鞘氨醇羟化酶1和鞘氨醇羟化酶2;LOH11/3,神经酰胺合成酶1和3;LCBK2,鞘氨醇激酶2;ACER,碱性神经酰胺酶;NPC4,非特异性的磷脂酶C4;FB1,伏马菌素B1;LOHs,神经酰胺合酶;FAHs,脂肪酸2-羟基化酶;ACD11,(植物)神经酰胺-1-磷酸转运蛋白;ACD5,神经酰胺激酶;IPCS,肌醇磷酸神经酰胺合成酶;ET,乙烯;JA,茉莉酸;SA,水杨酸。
植物细胞中鞘脂及其磷酸化衍生物之间的动态平衡调节PCD过程[
拟南芥神经酰胺激酶突变体acd5植株在发育初期生长正常,发育后期由于依赖于SA途径的神经酰胺积累导致PCD,并且JA通过调节鞘脂代谢和增加神经酰胺水平促进acd5突变体的细胞死亡[
植物蒸腾作用损失的水分和光合作用吸收的二氧化碳几乎都是通过植物叶片表面的气孔进行的[
鞘脂代谢途径影响非生物胁迫条件下植物根的发育过程。低温诱导拟南芥快速形成植物鞘氨醇-1-磷酸,该过程由LCBK2介导,lcbk2突变体在22 ℃和4 ℃下的生长表型与野生型植物相似,但在12 ℃下表现出更长的根生长表型,主要与冷响应性DELLA基因家族的RGL3表达量变化有关[
SPT在调控雄配子体发育过程中起着重要作用[
拟南芥花粉管的发育受到多种调控因素的影响。SPHK基因的敲除会降低体内花粉管的生长速度,过表达SPHK基因则会促进拟南芥花粉管的生长,鞘氨醇-1-磷酸通过介导Ca2+内流调节花粉管生长[
鞘脂参与植物早期形态建成和后期植株形态维持。编码SPT亚基的AtLCB1基因突变后,lcb1-1突变体表现出胚胎致死的表型,但通过RNAi的方法降低AtLCB1的表达水平,使得植物细胞变小,最终导致植株整体变小[
GCS基因缺失会导致拟南芥幼苗严重矮化,并且子叶畸形几乎不能形成初叶,细胞内高尔基体形态异常[
拟南芥脂质翻转酶ALA4和ALA5功能的同时缺失会导致植株严重矮化,且伴随细胞伸长缺陷,ala4ala5双突变体中仅葡糖神经酰胺的含量显著性增加,并且积累的葡糖神经酰胺类型分布范围较广,包括含C16-C26脂肪酸链在内的所有葡糖神经酰胺,可能是鞘脂代谢紊乱导致的植物细胞营养生长失衡引起了ala4ala5双突变体抑制生长的表型[
橄榄(Olea europaea L. cv. Picual)中鞘脂代谢动态参与果实的成熟和脱落[
植物中结构多样化的鞘脂类物质特异性的分布在不同细胞和组织中,调节植物的不同生长发育过程。以模式植物拟南芥为例,鞘脂调控拟南芥的幼苗发育、根的生长、气孔开闭、细胞程序性死亡、花粉及花粉管的发育和植株形态(见
SPERLING P, HEINZ E. Plant sphingolipids: Structural diversity, biosynthesis, first genes and functions[J]. Biochimica et Biophysica Acta, 2003, 1632(1/2/3): 1-15. [百度学术]
HANNUN Y A, OBEID L M. Principles of bioactive lipid signalling: Lessons from sphingolipids[J]. Nature Reviews Molecular Cell Biology, 2008, 9(2): 139-150. [百度学术]
CACAS J L, BURÉ C, GROSJEAN K, et al. Revisiting plant plasma membrane lipids in tobacco: A focus on sphingolipids[J]. Plant Physiology, 2016, 170(1): 367-384. [百度学术]
LYNCH D V, DUNN T M. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function[J]. New Phytologist, 2004, 161(3): 677-702. [百度学术]
SHI L H, BIELAWSKI J, MU J Y, et al. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis[J]. Cell Research, 2007, 17(12): 1030-1040. [百度学术]
ZHAO Y X, LIU Z J, WANG L, et al. Fumonisin B1 as a tool to explore sphingolipid roles in Arabidopsis primary root development[J]. International Journal of Molecular Sciences, 2022, 23(21): 12925. [百度学术]
ZIENKIEWICZ A, GÖMANN J, KÖNIG S, et al. Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormone-dependent plant cell death programmes[J]. New Phytologist, 2020, 226(1): 170-188. [百度学术]
COURSOL S, FAN L M, LE STUNFF H, et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins[J]. Nature, 2003, 423(6940): 651-654. [百度学术]
DUTILLEUL C, CHAVARRIA H, RÉZÉN , et al. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress[J]. Plant, Cell & Environment, 2015, 38(12): 2688-2697. [百度学术]
DIETRICH C R, HAN G S, CHEN M, et al. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability[J]. The Plant Journal, 2008, 54(2): 284-298. [百度学术]
CHUEASIRI C, CHUNTHONG K, PITNJAM K, et al. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development[J]. PLoS One, 2014, 9(9): e106386. [百度学术]
MSANNE J, CHEN M, LUTTGEHARM K D, et al. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis[J]. The Plant Journal, 2015, 84(1): 188-201. [百度学术]
CORBACHO J, INÉS C, PAREDES M A, et al. Modulation of sphingolipid long-chain base composition and gene expression during early olive-fruit development, and putative role of brassinosteroid[J]. Journal of Plant Physiology, 2018, 231: 383-392. [百度学术]
HANNUN Y A, OBEID L M. Sphingolipids and their metabolism in physiology and disease[J]. Nature Reviews Molecular Cell Biology, 2018, 19(3): 175-191. [百度学术]
GONZALEZ-SOLIS A, HAN G S, GAN L, et al. Unregulated sphingolipid biosynthesis in gene-edited Arabidopsis ORM mutants results in nonviable seeds with strongly reduced oil content[J]. The Plant Cell, 2020, 32(8): 2474-2490. [百度学术]
MARKHAM J E, JAWORSKI J G. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(7): 1304-1314. [百度学术]
MICHAELSON L V, NAPIER J A, MOLINO D, et al. Plant sphingolipids: Their importance in cellular organization and adaption[J]. Biochimica et Biophysica Acta, 2016, 1861(9 Pt B): 1329-1335. [百度学术]
MAMODE CASSIM A, GRISON M, ITO Y, et al. Sphingolipids in plants: A guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses[J]. FEBS Letters, 2020, 594(22): 3719-3738. [百度学术]
BURÉ C, CACAS J L, MONGRAND S, et al. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2014, 406(4): 995-1010. [百度学术]
GLENZ R, KAIPING A, GÖPFERT D, et al. The major plant sphingolipid long chain base phytosphingosine inhibits growth of bacterial and fungal plant pathogens[J]. Scientific Reports, 2022, 12(1): 1081. [百度学术]
CAHOON E B, LYNCH D V. Analysis of glucocerebrosides of rye (Secale cereale L. cv Puma) leaf and plasma membrane[J]. Plant Physiology, 1991, 95(1): 58-68. [百度学术]
MARKHAM J E, LYNCH D V, NAPIER J A, et al. Plant sphingolipids: Function follows form[J]. Current Opinion in Plant Biology, 2013, 16(3): 350-357. [百度学术]
MARKHAM J E, LI J, CAHOON E B, et al. Separation and identification of major plant sphingolipid classes from leaves[J]. Journal of Biological Chemistry, 2006, 281(32): 22684-22694. [百度学术]
WARNECKE D, HEINZ E. Recently discovered functions of glucosylceramides in plants and fungi[J]. Cellular and Molecular Life Sciences: CMLS, 2003, 60(5): 919-941. [百度学术]
MAMODE CASSIM A, NAVON Y, GAO Y, et al. Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation[J]. Journal of Biological Chemistry, 2021, 296: 100602. [百度学术]
CACAS J L, BURÉ C, FURT F, et al. Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity[J]. Phytochemistry, 2013, 96: 191-200. [百度学术]
MORTIMER J C, YU X L, ALBRECHT S, et al. Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis[J]. The Plant Cell, 2013, 25(5): 1881-1894. [百度学术]
BURÉ C, CACAS J L, WANG F, et al. Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2011, 25(20): 3131-3145. [百度学术]
GRONNIER J, GERMAIN V, GOUGUET P, et al. GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth[J]. Plant Signaling & Behavior, 2016, 11(4): e1152438. [百度学术]
KAUL K, LESTER R L. Characterization of inositol-containing phosphosphingolipids from tobacco leaves: Isolation and identification of two novel, major lipids: N-acetylglucosamidoglucuronidoinositol phosphorylceramide and glucosamidoglucuronidoinositol phosphorylceramide[J]. Plant Physiology, 1975, 55(1): 120-129. [百度学术]
TAMURA K, MITSUHASHI N, HARA-NISHIMURA I, et al. Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis[J]. Plant & Cell Physiology, 2001, 42(11): 1274-1281. [百度学术]
CHEN M, HAN G S, DIETRICH C R, et al. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase[J]. The Plant Cell, 2006, 18(12): 3576-3593. [百度学术]
CHAO D Y, GABLE K, CHEN M, et al. Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(3): 1061-1081. [百度学术]
CACAS J L, MELSER S, DOMERGUE F, et al. Rapid nanoscale quantitative analysis of plant sphingolipid long-chain bases by GC-MS[J]. Analytical and Bioanalytical Chemistry, 2012, 403(9): 2745-2755. [百度学术]
TERNES P, FRANKE S, ZÄHRINGER U, et al. Identification and characterization of a sphingolipid delta 4-desaturase family[J]. The Journal of Biological Chemistry, 2002, 277(28): 25512-25518. [百度学术]
SPERLING P, ZÄHRINGER U, HEINZ E. A sphingolipid desaturase from higher plants identification of a new cytochrome b5fusion protein[J]. Journal of Biological Chemistry, 1998, 273(44): 28590-28596. [百度学术]
CHEN M, MARKHAM J E, CAHOON E B. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis[J]. The Plant Journal, 2012, 69(5): 769-781. [百度学术]
MARKHAM J E, MOLINO D, GISSOT L, et al. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis[J]. The Plant Cell, 2011, 23(6): 2362-2378. [百度学术]
TERNES P, FEUSSNER K, WERNER S, et al. Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana[J]. New Phytologist, 2011, 192(4): 841-854. [百度学术]
LUTTGEHARM K D, CAHOON E B, MARKHAM J E. Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis[J]. The Biochemical Journal, 2016, 473(5): 593-603. [百度学术]
NAGANO M, TAKAHARA K, FUJIMOTO M, et al. Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses[J]. Plant Physiology, 2012, 159(3): 1138-1148. [百度学术]
KÖNIG S, GÖMANN J, ZIENKIEWICZ A, et al. Sphingolipid-induced programmed cell death is a salicylic acid and EDS1-dependent phenotype in Arabidopsis Fatty acid hydroxylase (Fah1, Fah2) and Ceramide synthase (Loh2) triple mutants[J]. Plant & Cell Physiology, 2022, 63(3): 317-325. [百度学术]
HAAK D, GABLE K, BEELER T, et al. Hydroxylation of saccharomyces cerevisiae ceramides requires Sur2p and Scs7p[J]. Journal of Biological Chemistry, 1997, 272(47): 29704-29710. [百度学术]
TERNES P, WOBBE T, SCHWARZ M, et al. Two pathways of sphingolipid biosynthesis are separated in the yeast pichia pastoris[J]. Journal of Biological Chemistry, 2011, 286(13): 11401-11414. [百度学术]
LEIPELT M, WARNECKE D, ZÄHRINGER U, et al. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi[J]. Journal of Biological Chemistry, 2001, 276(36): 33621-33629. [百度学术]
MELSER S, BATAILLER B, PEYPELUT M, et al. Glucosylceramide biosynthesis is involved in Golgi morphology and protein secretion in plant cells[J]. Traffic, 2010, 11(4): 479-490. [百度学术]
WANG W M, YANG X H, TANGCHAIBURANA S, et al. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis[J]. The Plant Cell, 2008, 20(11): 3163-3179. [百度学术]
MINA J G, OKADA Y, WANSADHIPATHI-KANNANGARA N K, et al. Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase[J]. Plant Molecular Biology, 2010, 73(4/5): 399-407. [百度学术]
RENNIE E A, EBERT B, MILES G P, et al. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis[J]. The Plant Cell, 2014, 26(8): 3314-3325. [百度学术]
FANG L, ISHIKAWA T, RENNIE E A, et al. Loss of inositol phosphorylceramide sphingolipid mannosylation induces plant immune responses and reduces cellulose content in Arabidopsis[J]. The Plant Cell, 2016, 28(12): 2991-3004. [百度学术]
JING B B, ISHIKAWA T, SOLTIS N, et al. The Arabidopsis thaliana nucleotide sugar transporter GONST2 is a functional homolog of GONST1[J]. Plant Direct, 2021, 5(3): e00309. [百度学术]
ISHIKAWA T, FANG L, RENNIE E A, et al. GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDETRANSFERASE1 (GINT1) is a GlcNAc-containing glycosylinositol phosphorylceramide glycosyltransferase[J]. Plant Physiology, 2018, 177(3): 938-952. [百度学术]
EBERT B, RAUTENGARTEN C, MCFARLANE H E, et al. A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids[J]. Nature Plants, 2018, 4: 792-801. [百度学术]
GAULT C R, OBEID L M, HANNUN Y A. An overview of sphingolipid metabolism: From synthesis to breakdown[J]. Advances in Experimental Medicine and Biology, 2010, 688: 1-23. [百度学术]
TSEGAYE Y, RICHARDSON C G, BRAVO J E, et al. Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18: 1 long chain base phosphate[J]. Journal of Biological Chemistry, 2007, 282(38): 28195-28206. [百度学术]
NISHIKAWA M, HOSOKAWA K, ISHIGURO M, et al. Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): Functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis[J]. Plant and Cell Physiology, 2008, 49(11): 1758-1763. [百度学术]
MAO C G, OBEID L M. Ceramidases: Regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate[J]. Biochimica et Biophysica Acta, 2008, 1781(9): 424-434. [百度学术]
OKINO N, HE X X, GATT S, et al. The reverse activity of human acid ceramidase[J]. Journal of Biological Chemistry, 2003, 278(32): 29948-29953. [百度学术]
WU J X, LI J, LIU Z, et al. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance[J]. The Plant Journal, 2015, 81(5): 767-780. [百度学术]
PATA M O, WU B X, BIELAWSKI J, et al. Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice[J]. The Plant Journal, 2008, 55(6): 1000-1009. [百度学术]
YU X M, WANG X J, HUANG X L, et al. Cloning and characterization of a wheat neutral ceramidase gene Ta-CDase[J]. Molecular Biology Reports, 2011, 38(5): 3447-3454. [百度学术]
ZHONG L, LIU E X, YANG C Z, et al. Gene cloning of a neutral ceramidase from the sphingolipid metabolic pathway based on transcriptome analysis of Amorphophallus muelleri[J]. PLoS One, 2018, 13(3): e0194863. [百度学术]
CHEN L Y, SHI D Q, ZHANG W J, et al. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells[J]. Nature Communications, 2015, 6: 6030. [百度学术]
DAI G Y, YIN J, LI K E, et al. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides[J]. Journal of Biological Chemistry, 2020, 295(3): 717-728. [百度学术]
HASI R Y, MIYAGI M, MORITO K, et al. Glycosylinositol phosphoceramide-specific phospholipase D activity catalyzes transphosphatidylation[J]. Journal of Biochemistry, 2019, 166(5): 441-448. [百度学术]
YANG B, LI M Y, PHILLIPS A, et al. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency[J]. The Plant Cell, 2021, 33(3): 766-780. [百度学术]
HURLOCK A K, ROSTON R L, WANG K, et al. Lipid trafficking in plant cells[J]. Traffic, 2014, 15(9): 915-932. [百度学术]
SIMANSHU D K, ZHAI X H, MUNCH D, et al. Arabidopsis accelerated cell death 11, ACD11, is a ceramide-1-phosphate transfer protein and intermediary regulator of phytoceramide levels[J]. Cell Reports, 2014, 6(2): 388-399. [百度学术]
BRODERSEN P, PETERSEN M, PIKE H M, et al. Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense[J]. Genes & Development, 2002, 16(4): 490-502. [百度学术]
WEST G, VIITANEN L, ALM C, et al. Identification of a glycosphingolipid transfer protein GLTP1 in Arabidopsis thaliana[J]. The FEBS Journal, 2008, 275(13): 3421-3437. [百度学术]
WATTELET-BOYER V, BROCARD L, JONSSON K, et al. Enrichment of hydroxylated C24-and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains[J]. Nature Communications, 2016, 7: 12788. [百度学术]
DAVIS J A, PARES R B, PALMGREN M, et al. A potential pathway for flippase-facilitated glucosylceramide catabolism in plants[J]. Plant Signaling & Behavior, 2020, 15(10): 1783486. [百度学术]
ROLAND B P, NAITO T, BEST J T, et al. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs[J]. Journal of Biological Chemistry, 2019, 294(6): 1794-1806. [百度学术]
HANADA K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism[J]. Biochimica et Biophysica Acta, 2003, 1632(1/2/3): 16-30. [百度学术]
KIMBERLIN A N, MAJUMDER S, HAN G S, et al. Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity[J]. The Plant Cell, 2013, 25(11): 4627-4639. [百度学术]
LI J, YIN J, RONG C, et al. Orosomucoid proteins interact with the small subunit of serine palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in Arabidopsis[J]. The Plant Cell, 2016, 28(12): 3038-3051. [百度学术]
HAN S M, LONE M A, SCHNEITER R, et al. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5851-5856. [百度学术]
HUBY E, NAPIER J A, BAILLIEUL F, et al. Sphingolipids: Towards an integrated view of metabolism during the plant stress response[J]. New Phytologist, 2020, 225(2): 659-670. [百度学术]
LIANG H, YAO N, SONG J T, et al. Ceramides modulate programmed cell death in plants[J]. Genes & Development, 2003, 17(21): 2636-2641. [百度学术]
WORRALL D, LIANG Y K, ALVAREZ S, et al. Involvement of sphingosine kinase in plant cell signalling[J]. The Plant Journal, 2008, 56(1): 64-72. [百度学术]
GUO L, MISHRA G, TAYLOR K, et al. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases[J]. Journal of Biological Chemistry, 2011, 286(15): 13336-13345. [百度学术]
LIU H, CHAKRAVARTY D, MACEYKA M, et al. Sphingosine kinases: A novel family of lipid kinases[J]. Progress in Nucleic Acid Research and Molecular Biology, 2002, 71: 493-511. [百度学术]
ADAMS D R, PYNE S, PYNE N J. Structure-function analysis of lipid substrates and inhibitors of sphingosine kinases[J]. Cellular Signalling, 2020, 76: 109806. [百度学术]
ABBAS H K, TANAKA T, DUKE S O, et al. Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases[J]. Plant Physiology, 1994, 106(3): 1085-1093. [百度学术]
ZENG H Y, LI C Y, YAO N. Fumonisin B1: A tool for exploring the multiple functions of sphingolipids in plants[J]. Frontiers in Plant Science, 2020, 11: 600458. [百度学术]
YANAGAWA D, ISHIKAWA T, IMAI H. Synthesis and degradation of long-chain base phosphates affect fumonisin B1-induced cell death in Arabidopsis thaliana[J]. Journal of Plant Research, 2017, 130(3): 571-585. [百度学术]
BRANDWAGT B F, MESBAH L A, TAKKEN F L, et al. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9): 4961-4966. [百度学术]
SPASSIEVA S D, MARKHAM J E, HILLE J. The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death[J]. The Plant Journal, 2002, 32(4): 561-572. [百度学术]
KRÜGER F, KREBS M, VIOTTI C, et al. PDMP induces rapid changes in vacuole morphology in Arabidopsis root cells[J]. Journal of Experimental Botany, 2013, 64(2): 529-540. [百度学术]
TJELLSTRÖM H, HELLGREN L I, WIESLANDER Å, et al. Lipid asymmetry in plant plasma membranes: Phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet[J]. The FASEB Journal, 2010, 24(4): 1128-1138. [百度学术]
CACAS J L, FURT F, LE GUÉDARD M, et al. Lipids of plant membrane rafts[J]. Progress in Lipid Research, 2012, 51(3): 272-299. [百度学术]
BORNER G H H, SHERRIER D J, WEIMAR T, et al. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts[J]. Plant Physiology, 2005, 137(1): 104-116. [百度学术]
LIN S S, MARTIN R, MONGRAND S, et al. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis[J]. The Plant Journal, 2008, 56(4): 550-561. [百度学术]
FUTERMAN A H, HANNUN Y A. The complex life of simple sphingolipids[J]. EMBO Reports, 2004, 5(8): 777-782. [百度学术]
PATA M O, HANNUN Y A, NG C K Y. Plant sphingolipids: Decoding the enigma of the Sphinx[J]. New Phytologist, 2010, 185(3): 611-630. [百度学术]
LUTTGEHARM K D, KIMBERLIN A N, CAHOON E B. Plant sphingolipid metabolism and function[M]//Lipids in Plant and Algae Development. Cham: Springer, 2016: 249-286. [百度学术]
CHEN M, MARKHAM J E, DIETRICH C R, et al. Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis[J]. The Plant Cell, 2008, 20(7): 1862-1878. [百度学术]
MICHAELSON L V, ZÄUNER S, MARKHAM J E, et al. Functional characterization of a higher plant sphingolipid Delta4-desaturase: Defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis[J]. Plant Physiology, 2009, 149(1): 487-498. [百度学术]
SPERLING P, FRANKE S, LÜTHJE S, et al. Are glucocerebrosides the predominant sphingolipids in plant plasma membranes?[J]. Plant Physiology and Biochemistry, 2005, 43(12): 1031-1038. [百度学术]
SHAO Z Y, ZHAO Y T, LIU L H, et al. Overexpression of FBR41 enhances resistance to sphinganine analog mycotoxin-induced cell death and Alternaria stem canker in tomato[J]. Plant Biotechnology Journal, 2020, 18(1): 141-154. [百度学术]
ASAI T, STONE J M, HEARD J E, et al. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways[J]. The Plant Cell, 2000, 12(10): 1823-1836. [百度学术]
COUPE S A, WATSON L M, RYAN D J, et al. Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea: Cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues[J]. Journal of Experimental Botany, 2004, 55(394): 59-68. [百度学术]
HUANG L Q, CHEN D K, LI P P, et al. Jasmonates modulate sphingolipid metabolism and accelerate cell death in the ceramide kinase mutant acd5[J]. Plant Physiology, 2021, 187(3): 1713-1727. [百度学术]
TOWNLEY H E, MCDONALD K, JENKINS G I, et al. Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner[J]. Biological Chemistry, 2005, 386(2): 161-166. [百度学术]
LAWSON T, MATTHEWS J. Guard cell metabolism and stomatal function[J]. Annual Review of Plant Biology, 2020, 71: 273-302. [百度学术]
AGURLA S, RAGHAVENDRA A S. Convergence and divergence of signaling events in guard cells during stomatal closure by plant hormones or microbial elicitors[J]. Frontiers in Plant Science, 2016, 7: 1332. [百度学术]
HAWORTH M, MARINO G, LORETO F, et al. Integrating stomatal physiology and morphology: Evolution of stomatal control and development of future crops[J]. Oecologia, 2021, 197(4): 867-883. [百度学术]
NG C K, CARR K, MCAINSH M R, et al. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate[J]. Nature, 2001, 410(6828): 596-599. [百度学术]
COURSOL S, LE STUNFF H, LYNCH D V, et al. Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture[J]. Plant Physiology, 2005, 137(2): 724-737. [百度学术]
NAKAGAWA N, KATO M, TAKAHASHI Y, et al. Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: Functional characterization of LCBP phosphatase involved in the dehydration stress response[J]. Journal of Plant Research, 2012, 125(3): 439-449. [百度学术]
ZHANG W H, QIN C B, ZHAO J, et al. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(25): 9508-9513. [百度学术]
ZHANG Y Y, ZHU H Y, ZHANG Q, et al. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis[J]. The Plant Cell, 2009, 21(8): 2357-2377. [百度学术]
GUO L, MISHRA G, MARKHAM J E, et al. Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis[J]. Journal of Biological Chemistry, 2012, 287(11): 8286-8296. [百度学术]
DUTILLEUL C, BENHASSAINE-KESRI G, DEMANDRE C, et al. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling[J]. New Phytologist, 2012, 194(1): 181-191. [百度学术]
LIU Y J, WANG L, LI X, et al. Detailed sphingolipid profile responded to salt stress in cotton root and the GhIPCS1 is involved in the regulation of plant salt tolerance[J]. Plant Science, 2022, 316: 111174. [百度学术]
TENG C, DONG H L, SHI L H, et al. Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis[J]. Plant Physiology, 2008, 146(3): 1322-1332. [百度学术]
WU J Y, QIN X Y, TAO S T, et al. Long-chain base phosphates modulate pollen tube growth via channel-mediated influx of calcium[J]. The Plant Journal, 2014, 79(3): 507-516. [百度学术]
KE C J, LIN X J, ZHANG B Y, et al. Turgor regulation defect 1 proteins play a conserved role in pollen tube reproductive innovation of the angiosperms[J]. The Plant Journal, 2021, 106(5): 1356-1365. [百度学术]
TARTAGLIO V, RENNIE E A, CAHOON R, et al. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis[J]. The Plant Journal, 2017, 89(2): 278-290. [百度学术]
LUTTGEHARM K D, CHEN M, MEHRA A, et al. Overexpression of Arabidopsis ceramide synthases differentially affects growth, sphingolipid metabolism, programmed cell death, and mycotoxin resistance[J]. Plant Physiology, 2015, 169(2): 1108-1117. [百度学术]
DAVIS J A, PARES R B, BERNSTEIN T, et al. The lipid flippases ALA4 and ALA5 play critical roles in cell expansion and plant growth[J]. Plant Physiology, 2020, 182(4): 2111-2125. [百度学术]
WANG X, ZHANG Z F, PENG W, et al. Inositolphosphorylceramide synthases, OsIPCSs, regulate plant height in rice[J]. Plant Science, 2023, 335: 111798. [百度学术]
INÊS C, PARRA-LOBATO M C, PAREDES M A, et al. Sphingolipid distribution, content and gene expression during olive-fruit development and ripening[J]. Frontiers in Plant Science, 2018, 9: 28. [百度学术]
PARRA-LOBATO M C, PAREDES M A, LABRADOR J, et al. Localization of sphingolipid enriched plasma membrane regions and long-chain base composition during mature-fruit abscission in olive[J]. Frontiers in Plant Science, 2017, 8: 1138. [百度学术]
HUANG D D, TIAN W, FENG J R, et al. Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit[J]. Plant Physiology and Biochemistry, 2020, 151: 60-68. [百度学术]
0
浏览量
0
下载量
0
CSCD
相关文章
相关作者
相关机构