浏览全部资源
扫码关注微信
1.福建农林大学 生命科学学院,福建 福州 350002
2.福建农林大学 未来技术学院/国家甘蔗工程技术研究中心,福建 福州 350002
罗笑,女,甘肃陇南人,博士研究生,从事鞘脂调控植物发育的研究,luoxiao921@163.com。
陈立余,男,浙江宁波人,教授,博士生导师,从事植物生殖与驯化研究,lychen@fafu.edu.cn。
纸质出版日期:2024-10-25,
收稿日期:2024-08-06,
移动端阅览
罗笑, 陈立余. 鞘脂代谢调控植物生长发育[J]. 西北大学学报(自然科学版), 2024,54(5):822-839.
LUO Xiao, CHEN Liyu. Sphingolipids metabolism regulates plant growth and development[J]. Journal of Northwest University (Natural Science Edition), 2024,54(5):822-839.
罗笑, 陈立余. 鞘脂代谢调控植物生长发育[J]. 西北大学学报(自然科学版), 2024,54(5):822-839. DOI: 10.16152/j.cnki.xdxbzr.2024-05-005.
LUO Xiao, CHEN Liyu. Sphingolipids metabolism regulates plant growth and development[J]. Journal of Northwest University (Natural Science Edition), 2024,54(5):822-839. DOI: 10.16152/j.cnki.xdxbzr.2024-05-005.
鞘脂类物质是构成植物膜系统的重要组分,在不同的植物细胞和组织中鞘脂的结构和含量分布迥异。鞘脂也是细胞内重要的信号分子,参与调控植物的程序性细胞死亡、气孔开闭、根的生长、花粉发育、植物形态建成和果实成熟与脱落等多个过程。鞘脂代谢紊乱会造成底物或者产物的积累,进而导致植物生长、发育异常。目前植物中鞘脂的研究主要通过突变体表型和鞘脂类物质的含量来评估,缺乏对精密调控网络的研究,因此有较大的研究空白亟待填补。综述了目前参与植物鞘脂代谢过程的鞘脂类物质及其相关的代谢酶类,并分类讨论了鞘脂代谢基因突变体表型和造成突变体表型的潜在原因。
Sphingolipids are essential components of plant biomembrane system with their structure and content varying significantly across different plant cells and tissues. They also function as intracellular signaling molecules
participating in the regulation of processes such as programmed cell death
stomatal open and closure
root growth
pollen development
plant morphogenesis
and fruit ripening and shedding. Disruptions in sphingolipid metabolism result in the accumulation of substrates or products
leading to abnormal plant development. Currently
research on sphingolipids in plants primarily evaluates mutant phenotype and changes of sphingolipids content. However
there are significant research gaps due to a lack of precise regulatory networks. This review summarized sphingolipids involved in plant sphingolipid metabolism and their related enzyme. It also discussed the mutant phenotype of sphingolipid metabolism related genes and the possible causes of the mutant phenotype.
鞘脂鞘脂稳态鞘氨醇神经酰胺生长发育
sphingolipidsphingolipid homeostasissphingosineceramidegrowth and development
SPERLING P, HEINZ E. Plant sphingolipids: Structural diversity, biosynthesis, first genes and functions[J]. Biochimica et Biophysica Acta, 2003, 1632(1/2/3): 1-15.
HANNUN Y A, OBEID L M. Principles of bioactive lipid signalling: Lessons from sphingolipids[J]. Nature Reviews Molecular Cell Biology, 2008, 9(2): 139-150.
CACAS J L, BURÉ C, GROSJEAN K, et al. Revisiting plant plasma membrane lipids in tobacco: A focus on sphingolipids[J]. Plant Physiology, 2016, 170(1): 367-384.
LYNCH D V, DUNN T M. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function[J]. New Phytologist, 2004, 161(3): 677-702.
SHI L H, BIELAWSKI J, MU J Y, et al. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis[J]. Cell Research, 2007, 17(12): 1030-1040.
ZHAO Y X, LIU Z J, WANG L, et al. Fumonisin B1 as a tool to explore sphingolipid roles in Arabidopsis primary root development[J]. International Journal of Molecular Sciences, 2022, 23(21): 12925.
ZIENKIEWICZ A, GÖMANN J, KÖNIG S, et al. Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormone-dependent plant cell death programmes[J]. New Phytologist, 2020, 226(1): 170-188.
COURSOL S, FAN L M, LE STUNFF H, et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins[J]. Nature, 2003, 423(6940): 651-654.
DUTILLEUL C, CHAVARRIA H, RÉZÉN , et al. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress[J]. Plant, Cell & Environment, 2015, 38(12): 2688-2697.
DIETRICH C R, HAN G S, CHEN M, et al. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability[J]. The Plant Journal, 2008, 54(2): 284-298.
CHUEASIRI C, CHUNTHONG K, PITNJAM K, et al. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development[J]. PLoS One, 2014, 9(9): e106386.
MSANNE J, CHEN M, LUTTGEHARM K D, et al. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis[J]. The Plant Journal, 2015, 84(1): 188-201.
CORBACHO J, INÉS C, PAREDES M A, et al. Modulation of sphingolipid long-chain base composition and gene expression during early olive-fruit development, and putative role of brassinosteroid[J]. Journal of Plant Physiology, 2018, 231: 383-392.
HANNUN Y A, OBEID L M. Sphingolipids and their metabolism in physiology and disease[J]. Nature Reviews Molecular Cell Biology, 2018, 19(3): 175-191.
GONZALEZ-SOLIS A, HAN G S, GAN L, et al. Unregulated sphingolipid biosynthesis in gene-edited Arabidopsis ORM mutants results in nonviable seeds with strongly reduced oil content[J]. The Plant Cell, 2020, 32(8): 2474-2490.
MARKHAM J E, JAWORSKI J G. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(7): 1304-1314.
MICHAELSON L V, NAPIER J A, MOLINO D, et al. Plant sphingolipids: Their importance in cellular organization and adaption[J]. Biochimica et Biophysica Acta, 2016, 1861(9 Pt B): 1329-1335.
MAMODE CASSIM A, GRISON M, ITO Y, et al. Sphingolipids in plants: A guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses[J]. FEBS Letters, 2020, 594(22): 3719-3738.
BURÉ C, CACAS J L, MONGRAND S, et al. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2014, 406(4): 995-1010.
GLENZ R, KAIPING A, GÖPFERT D, et al. The major plant sphingolipid long chain base phytosphingosine inhibits growth of bacterial and fungal plant pathogens[J]. Scientific Reports, 2022, 12(1): 1081.
CAHOON E B, LYNCH D V. Analysis of glucocerebrosides of rye (Secale cereale L. cv Puma) leaf and plasma membrane[J]. Plant Physiology, 1991, 95(1): 58-68.
MARKHAM J E, LYNCH D V, NAPIER J A, et al. Plant sphingolipids: Function follows form[J]. Current Opinion in Plant Biology, 2013, 16(3): 350-357.
MARKHAM J E, LI J, CAHOON E B, et al. Separation and identification of major plant sphingolipid classes from leaves[J]. Journal of Biological Chemistry, 2006, 281(32): 22684-22694.
WARNECKE D, HEINZ E. Recently discovered functions of glucosylceramides in plants and fungi[J]. Cellular and Molecular Life Sciences: CMLS, 2003, 60(5): 919-941.
MAMODE CASSIM A, NAVON Y, GAO Y, et al. Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation[J]. Journal of Biological Chemistry, 2021, 296: 100602.
CACAS J L, BURÉ C, FURT F, et al. Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity[J]. Phytochemistry, 2013, 96: 191-200.
MORTIMER J C, YU X L, ALBRECHT S, et al. Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis[J]. The Plant Cell, 2013, 25(5): 1881-1894.
BURÉ C, CACAS J L, WANG F, et al. Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2011, 25(20): 3131-3145.
GRONNIER J, GERMAIN V, GOUGUET P, et al. GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth[J]. Plant Signaling & Behavior, 2016, 11(4): e1152438.
KAUL K, LESTER R L. Characterization of inositol-containing phosphosphingolipids from tobacco leaves: Isolation and identification of two novel, major lipids: N-acetylglucosamidoglucuronidoinositol phosphorylceramide and glucosamidoglucuronidoinositol phosphorylceramide[J]. Plant Physiology, 1975, 55(1): 120-129.
TAMURA K, MITSUHASHI N, HARA-NISHIMURA I, et al. Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis[J]. Plant & Cell Physiology, 2001, 42(11): 1274-1281.
CHEN M, HAN G S, DIETRICH C R, et al. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase[J]. The Plant Cell, 2006, 18(12): 3576-3593.
CHAO D Y, GABLE K, CHEN M, et al. Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(3): 1061-1081.
CACAS J L, MELSER S, DOMERGUE F, et al. Rapid nanoscale quantitative analysis of plant sphingolipid long-chain bases by GC-MS[J]. Analytical and Bioanalytical Chemistry, 2012, 403(9): 2745-2755.
TERNES P, FRANKE S, ZÄHRINGER U, et al. Identification and characterization of a sphingolipid delta 4-desaturase family[J]. The Journal of Biological Chemistry, 2002, 277(28): 25512-25518.
SPERLING P, ZÄHRINGER U, HEINZ E. A sphingolipid desaturase from higher plants identification of a new cytochrome b5fusion protein[J]. Journal of Biological Chemistry, 1998, 273(44): 28590-28596.
CHEN M, MARKHAM J E, CAHOON E B. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis[J]. The Plant Journal, 2012, 69(5): 769-781.
MARKHAM J E, MOLINO D, GISSOT L, et al. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis[J]. The Plant Cell, 2011, 23(6): 2362-2378.
TERNES P, FEUSSNER K, WERNER S, et al. Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana[J]. New Phytologist, 2011, 192(4): 841-854.
LUTTGEHARM K D, CAHOON E B, MARKHAM J E. Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis[J]. The Biochemical Journal, 2016, 473(5): 593-603.
NAGANO M, TAKAHARA K, FUJIMOTO M, et al. Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses[J]. Plant Physiology, 2012, 159(3): 1138-1148.
KÖNIG S, GÖMANN J, ZIENKIEWICZ A, et al. Sphingolipid-induced programmed cell death is a salicylic acid and EDS1-dependent phenotype in Arabidopsis Fatty acid hydroxylase (Fah1, Fah2) and Ceramide synthase (Loh2) triple mutants[J]. Plant & Cell Physiology, 2022, 63(3): 317-325.
HAAK D, GABLE K, BEELER T, et al. Hydroxylation of saccharomyces cerevisiae ceramides requires Sur2p and Scs7p[J]. Journal of Biological Chemistry, 1997, 272(47): 29704-29710.
TERNES P, WOBBE T, SCHWARZ M, et al. Two pathways of sphingolipid biosynthesis are separated in the yeast pichia pastoris[J]. Journal of Biological Chemistry, 2011, 286(13): 11401-11414.
LEIPELT M, WARNECKE D, ZÄHRINGER U, et al. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi[J]. Journal of Biological Chemistry, 2001, 276(36): 33621-33629.
MELSER S, BATAILLER B, PEYPELUT M, et al. Glucosylceramide biosynthesis is involved in Golgi morphology and protein secretion in plant cells[J]. Traffic, 2010, 11(4): 479-490.
WANG W M, YANG X H, TANGCHAIBURANA S, et al. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis[J]. The Plant Cell, 2008, 20(11): 3163-3179.
MINA J G, OKADA Y, WANSADHIPATHI-KANNANGARA N K, et al. Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase[J]. Plant Molecular Biology, 2010, 73(4/5): 399-407.
RENNIE E A, EBERT B, MILES G P, et al. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis[J]. The Plant Cell, 2014, 26(8): 3314-3325.
FANG L, ISHIKAWA T, RENNIE E A, et al. Loss of inositol phosphorylceramide sphingolipid mannosylation induces plant immune responses and reduces cellulose content in Arabidopsis[J]. The Plant Cell, 2016, 28(12): 2991-3004.
JING B B, ISHIKAWA T, SOLTIS N, et al. The Arabidopsis thaliana nucleotide sugar transporter GONST2 is a functional homolog of GONST1[J]. Plant Direct, 2021, 5(3): e00309.
ISHIKAWA T, FANG L, RENNIE E A, et al. GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDETRANSFERASE1 (GINT1) is a GlcNAc-containing glycosylinositol phosphorylceramide glycosyltransferase[J]. Plant Physiology, 2018, 177(3): 938-952.
EBERT B, RAUTENGARTEN C, MCFARLANE H E, et al. A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids[J]. Nature Plants, 2018, 4: 792-801.
GAULT C R, OBEID L M, HANNUN Y A. An overview of sphingolipid metabolism: From synthesis to breakdown[J]. Advances in Experimental Medicine and Biology, 2010, 688: 1-23.
TSEGAYE Y, RICHARDSON C G, BRAVO J E, et al. Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18: 1 long chain base phosphate[J]. Journal of Biological Chemistry, 2007, 282(38): 28195-28206.
NISHIKAWA M, HOSOKAWA K, ISHIGURO M, et al. Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): Functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis[J]. Plant and Cell Physiology, 2008, 49(11): 1758-1763.
MAO C G, OBEID L M. Ceramidases: Regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate[J]. Biochimica et Biophysica Acta, 2008, 1781(9): 424-434.
OKINO N, HE X X, GATT S, et al. The reverse activity of human acid ceramidase[J]. Journal of Biological Chemistry, 2003, 278(32): 29948-29953.
WU J X, LI J, LIU Z, et al. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance[J]. The Plant Journal, 2015, 81(5): 767-780.
PATA M O, WU B X, BIELAWSKI J, et al. Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice[J]. The Plant Journal, 2008, 55(6): 1000-1009.
YU X M, WANG X J, HUANG X L, et al. Cloning and characterization of a wheat neutral ceramidase gene Ta-CDase[J]. Molecular Biology Reports, 2011, 38(5): 3447-3454.
ZHONG L, LIU E X, YANG C Z, et al. Gene cloning of a neutral ceramidase from the sphingolipid metabolic pathway based on transcriptome analysis of Amorphophallus muelleri[J]. PLoS One, 2018, 13(3): e0194863.
CHEN L Y, SHI D Q, ZHANG W J, et al. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells[J]. Nature Communications, 2015, 6: 6030.
DAI G Y, YIN J, LI K E, et al. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides[J]. Journal of Biological Chemistry, 2020, 295(3): 717-728.
HASI R Y, MIYAGI M, MORITO K, et al. Glycosylinositol phosphoceramide-specific phospholipase D activity catalyzes transphosphatidylation[J]. Journal of Biochemistry, 2019, 166(5): 441-448.
YANG B, LI M Y, PHILLIPS A, et al. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency[J]. The Plant Cell, 2021, 33(3): 766-780.
HURLOCK A K, ROSTON R L, WANG K, et al. Lipid trafficking in plant cells[J]. Traffic, 2014, 15(9): 915-932.
SIMANSHU D K, ZHAI X H, MUNCH D, et al. Arabidopsis accelerated cell death 11, ACD11, is a ceramide-1-phosphate transfer protein and intermediary regulator of phytoceramide levels[J]. Cell Reports, 2014, 6(2): 388-399.
BRODERSEN P, PETERSEN M, PIKE H M, et al. Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense[J]. Genes & Development, 2002, 16(4): 490-502.
WEST G, VIITANEN L, ALM C, et al. Identification of a glycosphingolipid transfer protein GLTP1 in Arabidopsis thaliana[J]. The FEBS Journal, 2008, 275(13): 3421-3437.
WATTELET-BOYER V, BROCARD L, JONSSON K, et al. Enrichment of hydroxylated C24-and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains[J]. Nature Communications, 2016, 7: 12788.
DAVIS J A, PARES R B, PALMGREN M, et al. A potential pathway for flippase-facilitated glucosylceramide catabolism in plants[J]. Plant Signaling & Behavior, 2020, 15(10): 1783486.
ROLAND B P, NAITO T, BEST J T, et al. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs[J]. Journal of Biological Chemistry, 2019, 294(6): 1794-1806.
HANADA K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism[J]. Biochimica et Biophysica Acta, 2003, 1632(1/2/3): 16-30.
KIMBERLIN A N, MAJUMDER S, HAN G S, et al. Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity[J]. The Plant Cell, 2013, 25(11): 4627-4639.
LI J, YIN J, RONG C, et al. Orosomucoid proteins interact with the small subunit of serine palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in Arabidopsis[J]. The Plant Cell, 2016, 28(12): 3038-3051.
HAN S M, LONE M A, SCHNEITER R, et al. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5851-5856.
HUBY E, NAPIER J A, BAILLIEUL F, et al. Sphingolipids: Towards an integrated view of metabolism during the plant stress response[J]. New Phytologist, 2020, 225(2): 659-670.
LIANG H, YAO N, SONG J T, et al. Ceramides modulate programmed cell death in plants[J]. Genes & Development, 2003, 17(21): 2636-2641.
WORRALL D, LIANG Y K, ALVAREZ S, et al. Involvement of sphingosine kinase in plant cell signalling[J]. The Plant Journal, 2008, 56(1): 64-72.
GUO L, MISHRA G, TAYLOR K, et al. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases[J]. Journal of Biological Chemistry, 2011, 286(15): 13336-13345.
LIU H, CHAKRAVARTY D, MACEYKA M, et al. Sphingosine kinases: A novel family of lipid kinases[J]. Progress in Nucleic Acid Research and Molecular Biology, 2002, 71: 493-511.
ADAMS D R, PYNE S, PYNE N J. Structure-function analysis of lipid substrates and inhibitors of sphingosine kinases[J]. Cellular Signalling, 2020, 76: 109806.
ABBAS H K, TANAKA T, DUKE S O, et al. Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases[J]. Plant Physiology, 1994, 106(3): 1085-1093.
ZENG H Y, LI C Y, YAO N. Fumonisin B1: A tool for exploring the multiple functions of sphingolipids in plants[J]. Frontiers in Plant Science, 2020, 11: 600458.
YANAGAWA D, ISHIKAWA T, IMAI H. Synthesis and degradation of long-chain base phosphates affect fumonisin B1-induced cell death in Arabidopsis thaliana[J]. Journal of Plant Research, 2017, 130(3): 571-585.
BRANDWAGT B F, MESBAH L A, TAKKEN F L, et al. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9): 4961-4966.
SPASSIEVA S D, MARKHAM J E, HILLE J. The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death[J]. The Plant Journal, 2002, 32(4): 561-572.
KRÜGER F, KREBS M, VIOTTI C, et al. PDMP induces rapid changes in vacuole morphology in Arabidopsis root cells[J]. Journal of Experimental Botany, 2013, 64(2): 529-540.
TJELLSTRÖM H, HELLGREN L I, WIESLANDER Å, et al. Lipid asymmetry in plant plasma membranes: Phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet[J]. The FASEB Journal, 2010, 24(4): 1128-1138.
CACAS J L, FURT F, LE GUÉDARD M, et al. Lipids of plant membrane rafts[J]. Progress in Lipid Research, 2012, 51(3): 272-299.
BORNER G H H, SHERRIER D J, WEIMAR T, et al. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts[J]. Plant Physiology, 2005, 137(1): 104-116.
LIN S S, MARTIN R, MONGRAND S, et al. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis[J]. The Plant Journal, 2008, 56(4): 550-561.
FUTERMAN A H, HANNUN Y A. The complex life of simple sphingolipids[J]. EMBO Reports, 2004, 5(8): 777-782.
PATA M O, HANNUN Y A, NG C K Y. Plant sphingolipids: Decoding the enigma of the Sphinx[J]. New Phytologist, 2010, 185(3): 611-630.
LUTTGEHARM K D, KIMBERLIN A N, CAHOON E B. Plant sphingolipid metabolism and function[M]//Lipids in Plant and Algae Development. Cham: Springer, 2016: 249-286.
CHEN M, MARKHAM J E, DIETRICH C R, et al. Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis[J]. The Plant Cell, 2008, 20(7): 1862-1878.
MICHAELSON L V, ZÄUNER S, MARKHAM J E, et al. Functional characterization of a higher plant sphingolipid Delta4-desaturase: Defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis[J]. Plant Physiology, 2009, 149(1): 487-498.
SPERLING P, FRANKE S, LÜTHJE S, et al. Are glucocerebrosides the predominant sphingolipids in plant plasma membranes?[J]. Plant Physiology and Biochemistry, 2005, 43(12): 1031-1038.
SHAO Z Y, ZHAO Y T, LIU L H, et al. Overexpression of FBR41 enhances resistance to sphinganine analog mycotoxin-induced cell death and Alternaria stem canker in tomato[J]. Plant Biotechnology Journal, 2020, 18(1): 141-154.
ASAI T, STONE J M, HEARD J E, et al. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways[J]. The Plant Cell, 2000, 12(10): 1823-1836.
COUPE S A, WATSON L M, RYAN D J, et al. Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea: Cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues[J]. Journal of Experimental Botany, 2004, 55(394): 59-68.
HUANG L Q, CHEN D K, LI P P, et al. Jasmonates modulate sphingolipid metabolism and accelerate cell death in the ceramide kinase mutant acd5[J]. Plant Physiology, 2021, 187(3): 1713-1727.
TOWNLEY H E, MCDONALD K, JENKINS G I, et al. Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner[J]. Biological Chemistry, 2005, 386(2): 161-166.
LAWSON T, MATTHEWS J. Guard cell metabolism and stomatal function[J]. Annual Review of Plant Biology, 2020, 71: 273-302.
AGURLA S, RAGHAVENDRA A S. Convergence and divergence of signaling events in guard cells during stomatal closure by plant hormones or microbial elicitors[J]. Frontiers in Plant Science, 2016, 7: 1332.
HAWORTH M, MARINO G, LORETO F, et al. Integrating stomatal physiology and morphology: Evolution of stomatal control and development of future crops[J]. Oecologia, 2021, 197(4): 867-883.
NG C K, CARR K, MCAINSH M R, et al. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate[J]. Nature, 2001, 410(6828): 596-599.
COURSOL S, LE STUNFF H, LYNCH D V, et al. Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture[J]. Plant Physiology, 2005, 137(2): 724-737.
NAKAGAWA N, KATO M, TAKAHASHI Y, et al. Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: Functional characterization of LCBP phosphatase involved in the dehydration stress response[J]. Journal of Plant Research, 2012, 125(3): 439-449.
ZHANG W H, QIN C B, ZHAO J, et al. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(25): 9508-9513.
ZHANG Y Y, ZHU H Y, ZHANG Q, et al. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis[J]. The Plant Cell, 2009, 21(8): 2357-2377.
GUO L, MISHRA G, MARKHAM J E, et al. Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis[J]. Journal of Biological Chemistry, 2012, 287(11): 8286-8296.
DUTILLEUL C, BENHASSAINE-KESRI G, DEMANDRE C, et al. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling[J]. New Phytologist, 2012, 194(1): 181-191.
LIU Y J, WANG L, LI X, et al. Detailed sphingolipid profile responded to salt stress in cotton root and the GhIPCS1 is involved in the regulation of plant salt tolerance[J]. Plant Science, 2022, 316: 111174.
TENG C, DONG H L, SHI L H, et al. Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis[J]. Plant Physiology, 2008, 146(3): 1322-1332.
WU J Y, QIN X Y, TAO S T, et al. Long-chain base phosphates modulate pollen tube growth via channel-mediated influx of calcium[J]. The Plant Journal, 2014, 79(3): 507-516.
KE C J, LIN X J, ZHANG B Y, et al. Turgor regulation defect 1 proteins play a conserved role in pollen tube reproductive innovation of the angiosperms[J]. The Plant Journal, 2021, 106(5): 1356-1365.
TARTAGLIO V, RENNIE E A, CAHOON R, et al. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis[J]. The Plant Journal, 2017, 89(2): 278-290.
LUTTGEHARM K D, CHEN M, MEHRA A, et al. Overexpression of Arabidopsis ceramide synthases differentially affects growth, sphingolipid metabolism, programmed cell death, and mycotoxin resistance[J]. Plant Physiology, 2015, 169(2): 1108-1117.
DAVIS J A, PARES R B, BERNSTEIN T, et al. The lipid flippases ALA4 and ALA5 play critical roles in cell expansion and plant growth[J]. Plant Physiology, 2020, 182(4): 2111-2125.
WANG X, ZHANG Z F, PENG W, et al. Inositolphosphorylceramide synthases, OsIPCSs, regulate plant height in rice[J]. Plant Science, 2023, 335: 111798.
INÊS C, PARRA-LOBATO M C, PAREDES M A, et al. Sphingolipid distribution, content and gene expression during olive-fruit development and ripening[J]. Frontiers in Plant Science, 2018, 9: 28.
PARRA-LOBATO M C, PAREDES M A, LABRADOR J, et al. Localization of sphingolipid enriched plasma membrane regions and long-chain base composition during mature-fruit abscission in olive[J]. Frontiers in Plant Science, 2017, 8: 1138.
HUANG D D, TIAN W, FENG J R, et al. Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit[J]. Plant Physiology and Biochemistry, 2020, 151: 60-68.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构