浏览全部资源
扫码关注微信
西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
薛文斌,男,从事岩石地球化学研究,xuewb97@163.com。
赖绍聪,男,博士生导师,教授,从事岩石地球化学研究,shaocong@nwu.edu. cn。
纸质出版日期:2024-08-25,
收稿日期:2024-04-26,
扫 描 看 全 文
薛文斌, 赖绍聪, 朱毓, 等. 扬子地块西缘中元古代晚期辉长岩成因及地质意义:来自锆石U-Pb-Hf同位素和全岩地球化学的约束[J]. 西北大学学报(自然科学版), 2024,54(4):696-714.
XUE Wenbin, LAI Shaocong, ZHU Yu, et al. Petrogenesis and geological significance of Late Mesoproterozoic gabbro in the western Yangtze Block: Constrains from zircon U-Pb-Hf isotopes and whole-rock geochemistry[J]. Journal of Northwest University (Natural Science Edition), 2024,54(4):696-714.
薛文斌, 赖绍聪, 朱毓, 等. 扬子地块西缘中元古代晚期辉长岩成因及地质意义:来自锆石U-Pb-Hf同位素和全岩地球化学的约束[J]. 西北大学学报(自然科学版), 2024,54(4):696-714. DOI: 10.16152/j.cnki.xdxbzr.2024-04-012.
XUE Wenbin, LAI Shaocong, ZHU Yu, et al. Petrogenesis and geological significance of Late Mesoproterozoic gabbro in the western Yangtze Block: Constrains from zircon U-Pb-Hf isotopes and whole-rock geochemistry[J]. Journal of Northwest University (Natural Science Edition), 2024,54(4):696-714. DOI: 10.16152/j.cnki.xdxbzr.2024-04-012.
对扬子地块西缘锦川地区辉长岩进行系统的锆石U-Pb-Hf同位素、全岩主微量元素和Sr-Nd同位素分析,旨在探讨其岩石成因及地质意义。年代学分析结果表明,锦川辉长岩的锆石U-Pb年龄为(1 041.1±1.1)Ma。全岩地球化学特征显示,锦川辉长岩具有较低的SiO
2
(50.26%~ 51.16%)、CaO(6.59%~7.64 %)、K
2
O(1.22%~1.96%)质量分数以及较高的Al
2
O
3
(16.38%~17.15%)和TiO
2
(2.61%~2.80%)质量分数,属于低钾拉斑玄武质岩石系列。岩石总体上相对富集轻稀土元素和大离子亲石元素(如Ba、Sr),亏损重稀土元素和高场强元素(如Nb、Ta和Th),并且显示弱的Eu异常(δEu=0.99 ~ 1.11)。同时,锦川辉长岩具有低的全岩εNd(t)值(-3.61~-2.75)和正的锆石εHf(t)值(+1.62 ~+7.58)。上述特征表明,锦川辉长岩应起源于已保存在岩石圈地幔中的先期(中元古代中期)俯冲流体交代过的富集地幔源区。结合扬子地块西缘同期广泛发育的A型花岗岩和板内玄武质岩浆作用,认为锦川辉长岩应形成于被动大陆边缘背景下的陆内裂谷环境,代表了Rodinia超大陆在中元古代晚期局部拉张构造体制下的岩浆响应。
This stud
y presents systematic analysis of zircon U-Pb-Hf isotopes
whole-rock major and trace elements
and Sr-Nd isotopes of the Jinchuan gabbros
aiming to explore its petrogenesis and geological significance. The Jinchuan gabbros has Zircon U-Pb age of 1 041.1±1.1 Ma
it has moderate SiO
2
(50.26% to 51.16%)
CaO (6.59% to 7.64 %)
K
2
O (1.22% to 1.96%) contents
with high Al
2
O
3
(16.38% to 17.15%) and TiO
2
(2.61% to 2.80%) contents
belonging to low-K tholeiite rocks. These gabbros were enriched in light rare earth elements and large ionic lithophile elements (e.g.
Ba
Sr)
as well as depleted in heavy rare earth elements and high field strength elements (e.g.
Nb
Ta
Th)
with weak Eu anomalies (δEu=0.99 to 1.11).They have negative εNd(t) values (-3.61 to-2.75) and positive zircon εHf(t) (+ 1.62 to+ 7.58) contents.These geochemical features indicate the Jinchuan gabbros were originated from the enriched mantle source that metasomatized by middle Mesoproterozoic subduction fluids preserved in the lithosphere mantle. Combined with the coeval A-type granites and intra-plate basaltic magmatism
the Jinchuan gabbros formed in an intracontinental rift environment under a passive continental margin
representing the magmatic response of the Rodinia supercontinent under local extensional tectonic mechanism during the late Mesoproterozoic.
扬子地块西缘中元古代晚期辉长岩岩石成因地质意义
western Yangtze BlockLate Mesoproterozoicgabbropetrogenesisgeological implications
LI Z X, LI X H, KINNY P, et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China? [J]. Earth and Planetary Science Letters, 1999, 173: 171-181.
李献华, 李武显, 何斌. 华南陆块的形成与Rodinia超大陆聚合裂解:观察、解释与检验[J]. 矿物岩石地球化学通报, 2012, 31(6): 543-559.
LI X H, LI W X, HE B. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 543-559.
LAI S C, QIN J F, ZHU R Z, et al. Neoproterozoic quartz monzodiorite-granodiorite association from the Luding-Kangding area: Implications for the interpretation of an active continental margin along the Yangtze Block (South China Block)[J]. Precambrian Research, 2015, 267(3/4): 196-208.
CAWOOD P A, ZHAO G C, YAO J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth Science Review, 2018 186: 173-194.
WANG D B, WANG B D, YIN F G, et al. Petrogenesis and tectonic implications of Late Mesoproterozoic A1-and A2-type felsic lavas from the Huili Group, southwestern Yangtze Block[J]. Geological Magazine, 2019, 156(8): 1425-1439.
ZHAO J H, LI Q W, LIU H, et al. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth Science Review, 2018, 187: 1-18.
CHEN W T, SUN W H, WANG W, et al. ”Grenvillian” intraplate mafic magmatism in the southwestern Yangtze Block, SW China[J]. Precambrian Research, 2014, 242: 138-153.
CHEN W T, SIUN W H, ZHOU M F, et al. Ca. 1050 Ma intra-continental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China[J]. Precambrian Research, 2018, 309: 22-44.
ZHU W G, ZHONG H, LI, Z X, et al. SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance[J]. Precambrian Research, 2016, 273: 67-89.
WANG Y J, ZHU W G, HUANG H Q, et al. Ca. 1.04 Ga hot Grenville granites in the western Yangtze Block, southwest China[J]Precambrian Research, 2019, 328: 217-234.
ZHAO G C, CAWOOD P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222: 13-54.
LI X H, LI Z X, GE W C, et al. Neporoteorzoic graniotids in South China: Crustal melting above a mantle plume at ca. 825 Ma?[J]. Precambrian Research, 2003, 122: 45-83.
裴先治, 李佐臣, 丁仨平, 等. 扬子地块西北缘轿子顶新元古代过铝质花岗岩:锆石SHRIMP UPb年龄和岩石地球化学及其构造意义[J]. 地学前缘, 2009, 16(3): 231-249.
PEI X Z, LI Z C, DENG S P, et al. Neoproterozoic Jiaoziding peraluminous granite in the northwest margin of Yangtze Block: Zircon SHRIMP U-Pb age and geochemistry and their tectonic significance[J]. Earth Science Frontiers, 2009, 16(3): 231-249.
GAO S, JIE Y, LIAN Z, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. Geochimica et Cosmochimica Acta Supplementary, 2011, 72(12): 153-182.
GAO S, LING W L, QIU Y, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze Craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2071-2088.
GREENTREE M R, LI Z X, LI X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151: 79-100.
GUO J L, GAO S, WU Y B, et al. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242: 82-95.
耿元生, 杨崇辉, 杜利林, 等. 天宝山组形成时代和形成环境:锆石SHRIMP U-Pb年龄和地球化学证据[J]. 地质论评, 2007, 53(4): 556-563.
GENG Y S, YANG C H, DU L L, et al. Chronology and tectonic environment of the Tianbaoshan Formation: New evidence from zircon SHRIMP U-Pb age and geochemistry[J]. Geological Review, 2007, 53(4): 556-563.
耿元生, 柳永清, 高林志, 等. 扬子克拉通西南缘中元古代通安组的形成时代:锆石LA-ICP-MS U-Pb年龄[J]. 地质学报, 2012, 86(9): 1479-1490.
GENG Y S, LIU Y Q, GAO L Z, et al. Geochronology of the Mesoproterozoic Tongan formationin southwestern margin of Yangtze Craton: New evidence from zircon LA-ICP-MS U-Pb ages[J]. Acta Geologica sinica, 2012, 86(9): 1479-1490.
GREENTREE M R, LI Z X. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 2008, 33: 289-302.
LI X H, LI Z X, SINCLAIR J A, et al. Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China[J]. Precambrian Research, 2006, 151(1/2): 14-30.
GREENTREE M R, LI Z X, LI X H, et al. Latest Mesoproterozoic to earliest Neoproterozoic Basin record of the Sibao Orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151: 79-100.
ZHANG C H, GAO L Z, WU Z J, et al. SHRIMP U-Pb zircon age of tuff from the Kunyang group in central Yunnan: Evidence for Grenvillian orogeny in south China[J]. China Science Bulletin, 2007, 52: 1517-1525.
邓尚贤. 滇中苍山群和苴林群的变质作用演化与地球化学研究[D]. 广东: 中国科学院广州地球化学研究所, 2002.
李复汉, 覃嘉铭, 申玉连, 等. 康滇地区的前震旦系[M]. 重庆: 重庆出版社, 1988.
WANG D B, WANG B D, YIN F G, et al. Petrogenesis and tectonic implications of Late Mesoproterozoic A1-and A2-type felsic lavas from the Huili Group, southwestern Yangtze Block[J]. Geological Magazine, 2019, 156(8): 1425-1439.
SUN W H, ZHOU M F, GAO J F, et al. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 2009, 172: 99-126.
MABI A W, YANG Z X, ZHANG M C, et al. Two types of granitesin the western Yangtze Block and their implications for regional tectonic evolution: Constraints from geochemistry and isotopic data[J]. Acta Geologica Sinica-(English Edition), 2018, 92(1): 89-105.
ZHU Y, LAI S C, QIN J F, et al. Petrogenesis and geochemical diversity of late Mesoproterozoic S-type granites in the western Yangtze Block, South China: Co-entrainment of peritectic selective phases and accessory minerals[J]. Lithos, 2020, 352: 105326.
YUAN H L, GAO S, LIU X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry[J]. Geostandard and Geoanalytical Research, 2004, 28(3): 353-370.
LUDWIG K R. ISOPLOT 3.0: A geochronological toolkit for microsoft excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003.
刘晔, 柳小明, 胡兆初, 等. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析[J]. 岩石学报, 2007, 23(5): 1203-1210.
LIU Y, LIU X M, HU Z C, et al. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS[J]. Acta Petrologica Sinica, 2007, 23(5): 1203-1210.
BAO Z A, CHEN L, ZONG C L, et al. Development of pressed sulfide powder tablets for in situ, sulfur and lead isotope measurement using LA-MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2017, 421: 255-262.
YUAN H L, GAO S, DAI M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1/2): 100-118.
SODERLUND U, PATCHETT P J, VERVOORT J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4), 311-324.
SUN S S, MCDONOUGH W F. Magmatism in the Ocean Basins[M]. London: Special Publication, 1989.
DU L L, GUO J H, NUTMAN A P, et al. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at ~860 Ma on the western marginof the Yangtze Block: Evidence from the Guandaoshan Pluton [J]. Lithos, 2014, 196: 67-82.
ZHOU M F, MA Y X, YAN D P, et al. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block [J]. Precambrian Research, 2006, 144: 19-38.
WEAVER B L. The origin of ocean island basalt end-member compositions: Traceelement and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104(2/4): 381-397.
BARTH M G, MCDONOUGH W F, RUDNICK R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165: 197-213.
LASSITER J C, DEPAOOLO D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints[C]//MAHONEY J J, COFFIN M F. Geophysical Monograph. San Francisco: American Geophysical Union, 1997.
WILSON B M. Igneous petrogenesis: A global tectonic approach[M]. London: Unwin Hyman, 1989.
RUSSELL J K, NICHOLLS J. Analysis of petrologic hypotheses with Pearce element ratios[J]. Contributions to Mineralogy and Petrology, 1988, 99: 25-35.
SKLYAROV E V, GLADKOCHUB D P, MAZUKABZOV A M, et al. Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian Craton[J]. Precambrian Research 2003, 122(1/2/3/4): 359-376.
ZHAO J H, ZHOU M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152(1): 27-47.
RUDNICK R L, GAO S. Composition of the continental crust[J]. Treaties on Geochemistry (Second Edition), 2003, 3: 1-64.
ORMEROD D S, HSWKESWORTH C J, ROGERS N W, et, al. Tectonic and magmatic transitions in the western Great Basin, USA[J]. Nature, 1988, 333: 349-353.
MCKENZIE D, BICKLE M J. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 1988, 29(3): 625-679.
LIGHTFOOD P C, HAWKESWORTH C J, HERGT J, et al. Remobilisation of the continental lithosphere by a mantle plume: Major-, traceelement, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia[J]. Contributions to Mineralogy and Petrology, 1993, 114: 171-188.
EWART A, MILNER S C, ARMSTRONG R A, et al. Erendeka volcanism of the Goboboseb mountains and Messum igneous complex, Namibia. Part I: Geochemicalevidence of early Cretaceous Tristan Plume melts and the role of crustalcontamination in the Parana-Etendeka CFB[J]. Journal of Petrology, 1998, 39(2): 191-225.
WOODHEAD J D, HERGT J M, DAVIDSON J P, et al. Hafnium isotope evidence for ”conservative” element mobility during subduction zone processes[J]. Earth & Planetary Science Letters, 2001, 192(3): 331-346.
HAWKINS J W, ISHIZUKA O. Petrologic evolution of Palau, a nascent island arc[J]. Island Arc, 2009, 18: 599-641.
任光明, 庞维华, 潘桂棠, 等. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义[J]. 地质通报, 2017, 36(11): 2061-2075.
REN G M, PANG W H, PAN G T, et al. Ascertainment of the Mesoproterozoic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance[J]. Geological Bulletin of China, 2017, 36(11): 2061-2075.
ARTH J G, BARKER F. Rare-earth partitioning between hornblendeand dacitic liquid and implications for the genesis of trondhjemitic-tonalitic magmas[J]. Geology, 1976, 4(9): 534-536.
CARLOS A R. Geochemistry of the tonalitic and granitic rocks of the Nova Scotia southern plutons[J]. Geochimica et Cosmochimica Acta, 1977, 41(1): 1-13.
XU Y G, MA J L, FREY F A, et al. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton[J]. Chemical Geology, 2005, 224(4): 247-271.
BREWER T S, AHALL K I, MENUGE J F, et al. Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurringpre: Sveconorwegian continental margin tectonism[J]. Precambrian Research, 2004 134: 249-273.
SHINJO R, KATO Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000 54: 117-137.
UKSTINS I A, RENNE P R, WOLFENDEN E. et al.Matching conjugate volcanic rifted margins: 40Ar/39Ar chrono-stratigraphy of pre-and syn-rift bimodal flood volcanism in Ethiopia and Yemen[J]. Earth and Planetary Science Letters, 2002, 198: 289-306.
SAUNDERS A D, TARNEY J. Geochemical characteristics of basaltic volcanism within back-arc basins[M]. London: Special Publications, 1984.
PEARCE J A, CANN J R. Tectonic setting of basic volcanic rocks determined usingtrace element analyses[J]. Earth and Planetary Science Letters, 1973, 19: 290-300.
PEARCEC J A, NORRY M J. Petrogenetic implications of Ti, Zr, Y, and Nb variationsin volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69: 33-47.
ROGERS J J W, GREENBERG J K. Late-orogenic, post-orogenic, and anorogenic granites: Distinction by major element and trace element chemistry and possibleorigins[J]. Journal of Geology, 1990, 98: 291-309.
RITTER J R R, JORDAN M, CHRISTENSEN U R, et al. A mantle plume below the Eifil volcanic fields, Germany[J]. Earth and Planetary Science Letters, 2001, 186: 7-14.
MESCHEDE M X. A method of discrimination between different types of midoceanicridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1990, 56: 207-218.
CHEN F L, CUI X Z, LIN S F, et al. The 1.14 Ga mafic intrusions in the SW Yangtze Block, South China: Records of late Mesoproterozoic intraplate magmatism[J]. Journal of Asian Earth Sciences, 2021, 205: 104603.
ZHANG J B, DING X Z, LIU Y X, et al. The ca. 1.13~0.92 Ga magmatism in the western Yangtze Block, South China: Implications for tectonic evolution and paleogeographic reconstruction[J]. Precambrian Research, 2023, 386: 106961.
LU G M, SPENCER C J, DENG X, et al. Mesoproterozoic magmatism redefines the tectonics and paleogeography of the SW Yangtze Block, China[J]. Precambrian Research, 2022, 370: 106558
LU G M, WANG W, ERNST R E, et al. Petrogenesis of Paleo-Mesoproterozoic mafic rocks in the southwestern Yangtze Block of South China: Implications for tectonic evolution and paleogeographic reconstruction[J]. Precambrian Research, 2019, 322: 66-84.
HUANG M D, CUI X Z, LIN S, et al. The ca. 1.18~1.14 Ga A-type granites in the southwestern Yangtze Block, South China: New evidence for late Mesoproterozoic continental rifting[J]. Precambrian Research, 2022, 363: 106358
CUI X Z, LIN S F, WANG J, et al. Latest Mesoproterozoic provenance shift in the southwestern Yangtze Block, South China: Insights into tectonic evolution in the context of the supercontinent cycle[J]. Gondwana Research, 2021, 99: 131-148.
DU Q D, WANG Z J, WANG J, et al. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China[J]. International Journal of Earth Sciences, 2015, 105: 521-535.
WANG X L, ZHOU J C, WAN Y S, et al. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from Southern China: Hf and O isotopes in zircon[J]. Earth and Planetary Science Letters, 2013, 366(2): 71-82.
SYLVESTER P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 29-44.
ZHU R Z, LAI S C, QIN J F, et al. Strongly peraluminous fractionated S-type granites in the Baoshan Block, SW China: Implications for two-stagemelting of fertile continental materials following the closure of Bangong-Nujiang Tethys[J]. Lithos, 2018, 316: 178-198.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构