浏览全部资源
扫码关注微信
1.重庆邮电大学 计算智能重庆市重点实验室,重庆 400065
2.重庆邮电大学 大数据智能计算重点实验室,重庆 400065
3.重庆邮电大学 旅游多源数据感知与决策技术文化和旅游部重点实验室,重庆 400065
黎珂源,男,从事智能信息处理、数据挖掘研究,928226056@qq.com。
张清华,男,教授,博士生导师,从事粗糙集、模糊集、粒计算等研究,zhangqh@cqupt.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-05-28,
扫 描 看 全 文
黎珂源, 张清华, 靳朋仁, 等. 一种基于宽度学习系统变体结构的肺炎检测方法[J]. 西北大学学报(自然科学版), 2024,54(4):665-676.
LI Keyuan, ZHANG Qinghua, JIN Pengren, et al. A pneumonia detection method based on the variant structure of broad learning system[J]. Journal of Northwest University (Natural Science Edition), 2024,54(4):665-676.
黎珂源, 张清华, 靳朋仁, 等. 一种基于宽度学习系统变体结构的肺炎检测方法[J]. 西北大学学报(自然科学版), 2024,54(4):665-676. DOI: 10.16152/j.cnki.xdxbzr.2024-04-009.
LI Keyuan, ZHANG Qinghua, JIN Pengren, et al. A pneumonia detection method based on the variant structure of broad learning system[J]. Journal of Northwest University (Natural Science Edition), 2024,54(4):665-676. DOI: 10.16152/j.cnki.xdxbzr.2024-04-009.
肺炎作为常见的呼吸系统疾病,准确、快速地诊断对患者的健康恢复至关重要。随着医疗技术的革新和人工智能的发展,计算机辅助诊断在医学领域的应用日益广泛。深度学习在肺炎检测领域取得了显著的成果,但其庞大的参数数量和复杂的网络结构导致训练时间长、计算资源消耗大等局限性。为了解决上述问题,提出了一种基于宽度学习系统变体结构的肺炎检测方法。该方法在原始宽度学习系统的基础上,引入了级联金字塔结构;同时,利用预训练的EfficientNet网络作为前置特征提取器;此外,还提出了适用于该模型的增量学习算法,包括增加额外的增强节点、特征节点和训练样本,以进一步优化模型性能;最后,在公开的肺炎胸部X射线数据集上进行了对比实验。实验结果表明,该方法实现了92.83%的准确率,AUC值高达98.86%,与众多深度卷积神经网络相比,具有相似的精度,同时大幅缩短了模型的训练时间。
Pneumonia as a common respiratory disease
its accurate and rapid diagnosis is crucial to the health of patients. With the innovation of medical technology and the development of artificial intelligence
computer-aided diagnosis has been increasingly used in the medical field. Deep learning has achieved remarkable results in the field of pneumonia detection
but its large number of parameters and complex network structure lead to limitations such as long training time and high consumption of computational resources. To solve the above problems
a pneumonia detection method based on the variant structure of broad learning system is proposed in this paper. The method introduces the cascade pyramid structure on the basis of original broad learning system. Meanwhile
the pre-trained EfficientNet network is utilised as the front feature extractor. In addition
the incremental learning algorithms applicable to the model are proposed in this paper
including adding additional enhancement nodes
feature nodes and training samples to further optimise the model performance. Finally
comparative experiments are conducted on the publicly available dataset of chest X-rays for pneumonia. The experimental results show that the method in this paper achieves 92.83% accuracy and 98.86% AUC value
which are comparable to many deep convolutional neural networks
while the training time of the model is significantly shortened.
肺炎检测宽度学习系统级联金字塔增量学习
pneumonia detectionbroad learning systemcascade pyramidincremental learning
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
梁隆恺, 付鹤, 陈峰蔚, 等. 深度学习与医学图像处理[M]. 北京: 人民邮电出版社, 2023.
蒋清婷, 叶海良, 曹飞龙. 基于三路径网络的医学图像分割方法[J]. 模式识别与人工智能, 2024, 37(1): 1-12.
JIANG Q T, YE H L, CAO F L. Medical image segmentation method with triplet-path network[J]. Pattern Recognition and Artificial Intelligence, 2024, 37(1): 1-12.
SHARMA H, JAIN J S, BANSAL P, et al. Feature extraction and classification of chest X-ray images using CNN to detect pneumonia[C]//2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence). Noida, India: IEEE, 2020: 227-231.
STEPHEN O, SAIN M, MADUH U J, et al. An efficient deep learning approach to pneumonia classification in healthcare[J]. Journal of Healthcare Engineering, 2019: 4180949.
KERMANY D S, GOLDBAUM M, CAI W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.
RAJPURKAR P, IRVIN J, ZHU K, et al. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning[EB/OL]. (2017-12-25)[2024-03-10]. https://arxiv.org/abs/1711.05225https://arxiv.org/abs/1711.05225.
JANIZEK J D, ERION G, DEGRAVE A J, et al. An adversarial approach for the robust classification of pneumonia from chest radiographs[C]//Proceedings of the ACM Conference on Health, Inference, and Learning. Toronto, Ontario, Canada: ACM, 2020: 69-79.
ZHANG J P, XIE Y T, PANG G S, et al. Viral pneumonia screening on chest X-rays using confidence-aware anomaly detection[J]. IEEE Transactions on Medical Imaging, 2021, 40(3): 879-890.
TUNCER T, OZYURT F, DOGAN S, et al. A novel Covid-19 and pneumonia classification method based on F-transform[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 210: 104256.
CHEN C L, LIU Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24.
CHEN C L, LIU Z L, FENG S. Universal approximation capability of broad learning system and its structural variations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1191-1204.
GONG X R, ZHANG T, CHEN C L, et al. Research review for broad learning system: Algorithms, theory, and applications[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 8922-8950.
ZHANG T, WANG X H, XU X M, et al. GCB-Net: Graph convolutional broad network and its application in emotion recognition[J]. IEEE Transactions on Affective Computing, 2022, 13(1): 379-388.
WANG X H, ZHANG T, XU X M, et al. EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system [C]//2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Madrid, Spain: IEEE, 2018: 1240-1244.
YANG Y X, GAO Z K, LI Y L, et al. A complex network-based broad learning system for detecting driver fatigue from EEG signals[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(9): 5800-5808.
PARHI P, BISOI R, DASH P K. Influential gene selection from high-dimensional genomic data using a bio-inspired algorithm wrapped broad learning system[J]. IEEE Access, 2022, 10: 49219-49232.
ZHAN C J, ZHENG Y F, ZHANG H J, et al. Random-forest-bagging broad learning system with applications for COVID-19 pandemic[J]. IEEE Internet of Things Journal, 2021, 8(21): 15906-15918.
HAN R Z, LIU Z L, CHEN C L. Multi-scale 3D convolution feature-based broad learning system for alzheimer’s disease diagnosis via MRI images[J]. Applied Soft Computing, 2022, 120: 108660.
LIU Z L, ZHOU J, CHEN C L. Broad learning system: Feature extraction based on K-means clustering algorithm [C]//2017 4th International Conference on Information, Cybernetics and Computational Social Systems. Dalian, China: IEEE, 2017: 683-687.
YANG F. A CNN-based broad learning system [C]//2018 IEEE 4th International Conference on Computer and Communications. Chengdu, China: IEEE, 2018: 2105-2109.
TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. (2019-05-28)[2024-03-10]. http://arxiv.org/abs/1905.11946http://arxiv.org/abs/1905.11946.
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90.
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1-9.
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778.
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2024-03-10]. https://arxiv.org/pdf/1409.1556https://arxiv.org/pdf/1409.1556.
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 2261-2269.
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2024-03-10]. https://arxiv.org/abs/1704.04861https://arxiv.org/abs/1704.04861.
MA Y, LIU Z, CHEN C L. Multiscale random convolution broad learning system for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 5503605.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构