浏览全部资源
扫码关注微信
1.西北大学 城市与环境学院,陕西 西安 710127
2.西北大学 化学与材料科学学院,陕西 西安 710127
3.西安金博瑞生态科技有限公司,陕西 西安 710065
朱晓丽,女,博士,教授,博士生导师,从事污染土壤修复研究,xiaolizhu@nwu.edu.cn。
纸质出版日期:2024-04-25,
收稿日期:2023-11-19,
扫 描 看 全 文
朱晓丽, 赵锦绣, 李富松, 等. 油茶籽粕发酵菌株的筛选鉴定及发酵产物特性分析[J]. 西北大学学报(自然科学版), 2024,54(2):240-250.
ZHU Xiaoli, ZHAO Jinxiu, LI Fusong, et al. Screening and characterization of fermentation strains of camellia sinensis seed meal and fermentation products[J]. Journal of Northwest University (Natural Science Edition), 2024,54(2):240-250.
朱晓丽, 赵锦绣, 李富松, 等. 油茶籽粕发酵菌株的筛选鉴定及发酵产物特性分析[J]. 西北大学学报(自然科学版), 2024,54(2):240-250. DOI: 10.16152/j.cnki.xdxbzr.2024-02-010.
ZHU Xiaoli, ZHAO Jinxiu, LI Fusong, et al. Screening and characterization of fermentation strains of camellia sinensis seed meal and fermentation products[J]. Journal of Northwest University (Natural Science Edition), 2024,54(2):240-250. DOI: 10.16152/j.cnki.xdxbzr.2024-02-010.
油茶行业的迅速发展导致油茶籽粕废弃物的大量产生,其落后的处理方式造成了严重的资源浪费,制约了我国油茶行业的可持续发展。油茶籽粕中富含有机质,利用微生物发酵法降解其中的纤维素、木质素及茶皂素等生物大分子来制备有机肥是实现油茶籽粕合理资源化利用的有效途径。通过筛选获得3株针对油茶籽粕中纤维素和木质素的高效降解菌,包括1株真菌X1-1,属于
Pleurostomarichardsiae
,以及2株细菌M4-2和M5-2,分别为蒙氏假单胞菌(
Pseudomonas monteilii
)和类芽孢杆菌(
Paenibacillus
sp)属,可有效降低发酵产物中茶皂素的含量,实现油茶籽粕的无害化处理。实验结果显示,经菌株X1-1、M4-2和M5-2发酵处理28 d后,油茶籽粕中纤维素含量的降解率分别为29.74%、19.65%和13.19%,木质素含量的降解率分别为12.84%、17.85%和26.39%,茶皂素含量的降解率分别为34.06%、45.05%和46.15%;且发酵后的油茶籽粕腐熟度、有机质含量和养分含量等指标均符合有机肥标准。研究结果拓展了油茶籽粕的资源化利用途径,同时为木质素和纤维素的高效降解提供了良好的菌种资源。
The rapid development of camellia oleifera industry has led to a large number of camellia oleifera seed residue
which caused serious waste of resources
restricting the sustainable development of China’s camellia oleifera industry.Considering the high contents of organic matter
using camellia oleifera seed residue to prepare organic fertilizer is an effective way for resource utilization. In the process of composting
cellulose
lignin and tea saponin and other biological macromolecules should be effectively biodegraded by microorganisms. In this paper
three highly efficient degrading strains targeting cellulose and lignin in camellia oleifera seed residue were obtained by screening and domestication
including 1 strain of fungus X1-1(
Pleurostomarichardsiae
)
and 2 strains of bacteria M4-2 (
Pseudomonas monteilii
) and M5-2 (
Paenibacillus
sp.). The three strains can also effectively reduce the content of tea saponin in fermentation products
to realize the harmless treatment of camellia oleifera seed residue.The experimental results showed that after 28 days of fermentation with strain X1-1
M4-2 and M5-2
the degradation rates of cellulose content in camellia oleifera seed residue were 29.74%
19.65% and 13.19%
the degradation rates of lignin content were 12.84%
17.85% and 26.39%
and the degradation rates of tea saponin content were 34.06%
45.05% and 46.15%
respectively.Moreover
the maturity
organic matter content
andnutrient content in fermentation product of camellia oleifera seed residue all met the organic fertilizer standards.The results of this study expand the resource utilization path of camellia oleifera seed residue
and provide good strain resources for the efficient degradation of lignin and cellulose.
油茶籽粕纤维素木质素茶皂素降解菌有机肥
camellia oleifera seed residuecelluloselignintea saponinsfermentation strainsorganic fertilizer
钟旭美, 张百刚, 朱杰. 我国油茶籽的综合利用[J]. 粮油食品科技, 2007, 15(2): 34-36.
ZHONG X M, ZHANG B G, ZHU J, The comprehensive utilization of camellia oleifera seed[J]. Science and Technology of Cereals, Oils and Foods, 2007, 15(2): 34-36.
侯黔灵, 范丽美. 低共熔溶剂提取油茶籽壳中原花青素的工艺优化[J]. 中国油脂, 2023, 48(2): 129-132.
HOU Q L, FAN L M. Optimization of extraction of procyanidins from oil-tea camellia seed shell with deep eutectic solvents[J]. China Oils and Fats, 2023, 48(2): 129-132.
方飞, 王力生. 油茶粕资源综合开发利用研究进展[J]. 饲料博览, 2011(6): 30-32.
FANG F, WANG L S. Research progress of comprehensive development and utilization on the resources of oil-tea-cake[J]. Feed Review, 2011(6): 30-32.
ZHAO Y, SU R Q, ZHANG W T, et al. Antibacterial activity of tea saponin from camellia oleifera shell by novel extraction method[J]. Industrial Crops and Products, 2020, 153: 112604.
ZHANG J P, YING Y, LI X B, et al. Evaluation of three kinds of nutshell with respect to utilization as culture media[J]. BioResources, 2018, 13(4): 7508-7518.
赵光远, 刘倩茹, 王瑛瑶, 等. 油茶籽加工的研究进展[J]. 食品研究与开发, 2011, 32(10): 169-172.
ZHAO G Y, LIU Q R, WANG Y Y, et al. Research progress on the processing of camellia oleifera seeds[J]. Food Research and Development, 2011, 32(10): 169-172.
WANG R, ZHANG J Y, SUI Q W, et al. Effect of red mud addition on tetracycline and copper resistance genes and microbial community during the full scale swine manure composting[J]. Bioresource Technology, 2016, 216: 1049-1057.
TAHERZADEH M J, KARIMI K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review[J]. International Journal of Molecular Sciences, 2008, 9(9): 1621-1651.
张晓燕. 不同预处理方法对玉米秸秆和沙柳纤维素降解率和乙醇产量的影响[D]. 呼和浩特: 内蒙古工业大学, 2017.
BHALLA A, BANSAL N, KUMAR S, et al. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes[J]. Bioresource Technology, 2013, 128: 751-759.
ANDLAR M, REZIC T, MARDETKO N, et al. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation[J]. Engineering in Life Sciences, 2018, 18(11): 768-778.
贾辉, 陈秀蓉, 芦光新, 等. 纤维素降解细菌的筛选、生物学特性及降解效果[J]. 草业学报, 2016, 25(3): 60-66.
JIA H, CHEN X R, LU G X, et al, lsolation of cellulose-degrading bacteria and determination of their degradation activity[J]. Acta Prataculturae Sinica, 2016, 25(3): 60-66.
王洪媛, 范丙全. 三株高效秸秆纤维素降解真菌的筛选及其降解效果[J]. 微生物学报, 2010, 50(7): 870-875.
WAGN H Y, FAN B Q. Screening of three straw-cellulose degrading microorganism[J]. Acta Microbiologica Sinica, 2010, 50(7): 870-875.
张晨敏. 低温纤维素降解菌的筛选及复合菌剂在秸秆还田中的应用[D]. 南京: 南京农业大学, 2014.
王郝为. 油茶粕发酵处理及饲用价值评定[D]. 长沙: 中南林业科技大学, 2016.
邓桂兰. 混合菌发酵油茶粕生产菌体蛋白饲料的研究[J]. 粮食与饲料工业, 2008(6): 30-32.
DENG G L. Research on protein feed produced from oil-tea meal fermented by mixed germs[J]. Cereal & Feed Industry, 2008(6): 30-32.
黄丹莲. 堆肥微生物群落演替及木质素降解功能微生物强化堆肥机理研究[D]. 长沙: 湖南大学, 2011.
黄卫文, 敖常伟, 钟海雁. 油茶皂素抑菌效果研究[J]. 经济林研究, 2002, 20(1): 17-19.
HUANG W W, AO C W, ZHONG H Y. The Antibacterial effect of oiltea saponin[J]. Non-wood Forest Research, 2002, 20(1): 17-19.
文莉, 芦苇, 蒋倩, 等. 茶皂素毒性刺激性试验及抑菌作用研究[J]. 中国油脂, 2011, 36(6): 58-60.
WEN L, LU W, JIANG Q, et al. Toxicity, irritation and bacteriostasis of tea saponin[J]. China Oils and Fats, 2011, 36(6): 58-60.
叶雪良. 茶皂素的开发与利用[J]. 化工生产与技术, 2002, 9(2): 6-8.
YE X L. Development and utilization of tea saponin[J]. Chemical Production and Technology, 2002, 9(2): 6-8.
侯俊杰, 李宁宁, 吕辉雄, 等. 茶皂素对种子发芽、根长及土壤酶活性的影响[J]. 农业环境科学学报, 2015, 34(4): 660-665.
HOU J J, LI N N, LYU H X, et al. Effects of tea saponin on seed germination, root lengths and soil enzyme activities[J]. Journal of Agro-Environment Science, 2015, 34(4): 660-665.
李灵灵, 王敬红, 赵铎, 等. 木质素降解菌BYL-7的筛选及降解条件优化[J]. 微生物学通报, 2020, 47(12): 4059-4071.
LI L L, WANG J H, ZHAO D, et al. Screening of lignin degrading strain BYL-7 and optimization of degradation conditions[J]. Microbiology China, 2020, 47(12): 4059-4071.
孟建宇, 陈勿力吉玛, 郭慧琴, 等. 常温和低温纤维素降解菌的分离及其降解特性[J]. 农业生物技术学报, 2021, 29(1): 73-84.
MENG J Y, CHEN W L J M, GUO H Q, et al. Isolation and degradation characteristics of cellulose-degradation bacteria at room and low temperature[J]. Journal of Agricultural Biotechnology, 2021, 29(1): 73-84.
杨勇, 聂旭, 王健, 等. 油茶饼粕纤维素降解菌的筛选与鉴定[J]. 江苏农业科学, 2014, 42(5): 299-301.
YANG Y, NIE X, WAGN J, et al. Screening and characterization of cellulose degrading bacteria in oil tea cake meal[J]. Jiangsu Agricultural Sciences, 2014, 42(5): 299-301.
国家卫生和计划生育委员会. 食品安全国家标准食品中水分的测定:GB 5009.3—2016[S]. 北京: 中国标准出版社, 2017.
国家卫生和计划生育委员会. 食品安全国家标准食品中灰分的测定:GB 5009.4—2016[S]. 北京: 中国标准出版社, 2017.
国家质量监督检验检疫总局. 食品中总酸的测定:GB/T 12456—2008[S]. 北京: 中国标准出版社, 2009.
国家卫生健康委员会. 植物类食品中粗纤维的测定:GB/T 5009.10—2003[S]. 北京: 中国标准出版社, 2004.
国家卫生和计划生育委员会, 食品安全国家标准食品中脂肪的测定:GB 5009.6—2016[S]. 北京: 中国标准出版社, 2017.
LI M, WANG C. Study on extraction of tea saponin from camellia cake [J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(5): 38-41.
SOEST P J V. Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin[J]. Journal of AOAC International, 1963, 49(4):546-551.
陈莹, 刘松柏, 何良兴, 等. 油茶籽粕和茶皂素中皂苷的定量检测方法研究[J]. 中国粮油学报, 2012, 27(2): 105-111.
CHEN Y, LIU S B, HE L X, et al. Quantitative analysis of saponins in camellia seed cake and tea saponins[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(2): 105-111.
张杰. 生物炭固定化高效解磷菌对铅污染土壤的修复研究[D]. 西安: 西北大学, 2019.
中华人民共和国农业部. 有机肥料:NY 525—2012[S]. 北京: 中国标准出版社, 2012.
WANG J, FU X, ZHAO F Z, et al. Response of soil carbon fractions and dryland maize yield to mulching[J]. Soil Science Society of America Journal, 2018, 82(2): 371-381.
骆婷, 夏虹, 冯定胜, 等. 森林土壤中多功能降解菌的分离筛选及鉴定[J]. 西南农业学报, 2018, 31(5): 1032-1040.
LUO T, XIA H, FENG D S, et al. Isolation and identification of multi-function deqradation bacteria from forest soi[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(5): 1032-1040.
张东升, 徐一馨, 宋双民, 等. 细菌产纤维素酶和脂肪酶固体培养基及接种和培养时间的研究[J]. 微生物学杂志, 2022, 42(3): 44-53.
ZHAGN D S, XU Y X, SONG S M, et al. Inoculation and culture time of bacterial cellulase and lipase production with solid culture medium[J]. Journal of Microbiology, 2022, 42(3): 44-53.
杜海萍, 宋瑞清, 王钰祺. 几种真菌产木质素降解酶的比较研究[J]. 林业科技, 2006, 31(4): 20-24.
DU H P, SONG R Q, WANG Y Q. Comparative study on the lignocellulolytic enzymes produced by fungi[J]. Forestry Science & Technology, 2006, 31(4): 20-24.
李希越, 王洪波, 赵玉晓, 等. 好氧生物预处理时间对玉米秸秆水解酸化的影响[J]. 生物质化学工程, 2022, 56(1): 13-22.
LI X Y, WAGN H B, ZHAO Y X, et al. Effect of aerobic biological pretreatment time on hydrolytic acidification of corn straw[J]. Biomass Chemical Engineering, 2022, 56(1): 13-22.
张仲卿, 张爱忠, 姜宁. 混合真菌发酵对玉米秸秆纤维素与木质素降解率的影响[J]. 动物营养学报, 2019, 31(3): 1385-1395.
ZHANG Z Q, ZHAGN A Z, JIANG N. Effects of mixed fungal fermentation on degradation rate of cellulose and lignin of corn straw[J]. Chinese Journal of Animal Nutrition, 2019, 31(3): 1385-1395.
黄浦, 肖瑜, 刘以清, 等. 桔青霉降解茶皂素的实验研究[J]. 桂林理工大学学报, 2016, 36(3): 592-596.
HUANG P, XIAO Y, LIU Y Q, et al. Degradation of tea saponin by penicillium citrinum[J]. Journal of Guilin University of Technology, 2016, 36(3): 592-596.
HUSSAIN R, KUMAR GHOSH K, RAVI K. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures[J]. Geoderma, 2021, 385: 114836.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构