浏览全部资源
扫码关注微信
1.中国石油大学(华东) 化学化工学院/重质油国家重点实验室,山东 青岛 266580
2.山东能源集团有限公司 大型煤气化及煤基新材料国家工程研究中心,山东 济南 250100
顾鑫,男,博士,副教授,从事二次电池中电极材料和电解质设计研究,gvxin@upc.edu.cn。
李忠涛,男,博士,教授,博士生导师,从事储能材料和纳米复合材料研究,liztao@upc.edu.cn。
纸质出版日期:2024-04-25,
收稿日期:2023-12-26,
扫 描 看 全 文
顾鑫, 尚鑫超, 王明清, 等. 超分子聚合物衍生的新型Nb(PO4)O的制备及其在钠离子电池中的应用[J]. 西北大学学报(自然科学版), 2024,54(2):220-229.
GU Xin, SHANG Xinchao, WANG Mingqing, et al. Preparation of new Nb(PO4)O derived from supramolecular polymer and its application in sodium ion batteries[J]. Journal of Northwest University (Natural Science Edition), 2024,54(2):220-229.
顾鑫, 尚鑫超, 王明清, 等. 超分子聚合物衍生的新型Nb(PO4)O的制备及其在钠离子电池中的应用[J]. 西北大学学报(自然科学版), 2024,54(2):220-229. DOI: 10.16152/j.cnki.xdxbzr.2024-02-008.
GU Xin, SHANG Xinchao, WANG Mingqing, et al. Preparation of new Nb(PO4)O derived from supramolecular polymer and its application in sodium ion batteries[J]. Journal of Northwest University (Natural Science Edition), 2024,54(2):220-229. DOI: 10.16152/j.cnki.xdxbzr.2024-02-008.
由于资源有限和成本较高,锂电池的大规模应用受到影响。相比之下,钠资源储量丰富,作为锂的替代品逐渐得到重视。然而,由于钠离子较大的半径,在电极嵌入/脱出过程中会使材料发生较大的体积变化,导致结构坍塌。要实现钠电的高性能应用,必须研发具有长循环寿命和优良倍率性能的负极材料。通过植酸三聚氰胺超分子聚合物辅助,运用一步煅烧法合成了一种新型的聚阴离子化合物氧化磷酸铌Nb(PO
4
)O。该材料具备稳定的大框架结构,保证了钠离子的快速传输;表面疏松的片状结构有利于电解液和电极之间进行传质,有效缩短扩散路径。当用作钠电负极组装钠离子电池时,在1 000 mA·g
-1
的电流密度下,3 000次循环以后可逆放电比容量达到133.7 mA·h·g
-1
;在4 000 mA·g
-1
的高电流密度下,可逆比容量仍有117.9 mA·h·g
-1
,与Nb
2
O
5
相比,具有明显的倍率性能和超长的循环稳定性。
Due to the limited distribution of lithium resources
the high cost disadvantage of lithium-ion battery gradually affects its large-scale application. In contrast
sodium resources are abundant in the world
as a substitute for lithium gradually gained widespread attention. However
due to the large radius of sodium ions
the material will undergo a large volume change during electrode insertion/removal
resulting in structural collapse. Therefore
in order to realize the high performance application of sodium electricity
it is necessary to develop cathode materials with long cycle life and good magnification performance. A novel polyanionic compound
niobium phosphate oxide Nb(PO
4
)O
was synthesized by one-step calcination with phytate-melamine supramolecular polymer assisted strategy. First of all
the material has a stable large frame structure to ensure the rapid transmission of sodium ions. Secondly
the loose sheet structure of the surface is conducive to the mass transfer between the electrolyte and the electrode
effectively shortening the diffusion path. When used as a sodium anode
the group of sodium ion batteries
in 1 000 mA·g
-1
current density
3 000 cycles after reversible discharge capacity can reach 133.7 mA·h·g
-1
in 4 000 mA·g
-1
high current density
reversible specific capacity is still 117.9 mA·h·g
-1
. Compared with Nb
2
O
5
it has obvious magnification performance and long cycle stability.
钠离子电池负极材料聚阴离子化合物氧化磷酸铌
sodium ion batterynegative electrode materialspolyanion compoundniobium phosphate oxide
JEONG G, KIM Y U, KIM H, et al. Prospective materials and applications for Li secondary batteries[J]. Energy & Environmental Science, 2011, 4(6): 1986-2002.
WU H B, CHEN J S, HNG H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542.
XIAO B, ZHANG W H, WANG P B, et al. V2(PO4)O encapsulated into crumpled nitrogen-doped graphene as a high-performance anode material for sodium-ion batteries[J]. Electrochimica Acta, 2019, 306: 238-244.
HAUTIER G, JAIN A, ONG S P, et al. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations[J]. Chemistry of Materials, 2011, 23(15): 3495-3508.
ZHENG J C, HAN Y D, ZHANG B, et al. Electrochemical properties of VPO4/C nanosheets and microspheres as anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6223-6226.
HU L Z, ZHENG S, CHEN Z, et al. 3D graphene modified sphere-like VPO4/C as a high-performance anode material for lithium-ion batteries[J]. Electrochimica Acta, 2018, 284: 609-617.
TANG L B, XIAO B, AN C S, et al. VPO4@C/graphene microsphere as a potential anode material for lithium-ion batteries[J]. Ceramics International, 2018, 44(12): 14432-14438.
HE G, KAN W H, MANTHIRAM A. A 3.4 V layered VOPO4 cathode for Na-ion batteries[J]. Chemistry of Materials, 2016, 28(2): 682-688.
XIAO B, ZHANG W H, WANG P B, et al. V2(PO4)O encapsulated into crumpled nitrogen-doped graphene as a high-performance anode material for sodium-ion batteries[J]. Electrochimica Acta, 2019, 306: 238-244.
XIAO B, ZHANG W H, XIA H F, et al. V2(PO4)O/C@CNT hollow spheres with a core-shell structure as a high performance anode material for lithium-ion batteries[J]. Materials Chemistry Frontiers, 2019, 3(3): 456-463.
NAN X H, LIU C F, ZHANG C K, et al. A new anode material for high performance lithium-ion batteries: V2(PO4)O/C[J]. Journal of Materials Chemistry A, 2016, 4(25): 9789-9796.
WEI Z X, MENG X, YAO Y, et al. Exploration of Ca0.5Ti2(PO4)3@carbon nanocomposite as the high-rate negative electrode for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35336-35341.
GAO C, FENG J Z, DAI J R, et al. Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage[J]. Carbon, 2019, 153: 372-380.
WANG D X, LIU Q, CHEN C J, et al. NASICON-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 2238-2246.
ZHANG X J, ZHANG Y, ZHOU Z, et al. Core-shell Ni0.5TiOPO4/C composites as anode materials in Li ion batteries[J]. Electrochimica Acta, 2011, 56(5): 2290-2294.
HUANG X F, XIE Z W, LI K S, et al. Thermal stability of CrWN glass molding coatings after vacuum annealing[J]. Coatings, 2020, 10(3): 198.
FETTKENHAUER C, WANG X C, KAILASAM K, et al. Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl2 eutectics[J]. Journal of Materials Chemistry A, 2015, 3(42): 21227-21232.
LIU F F, CHENG X L, XU R, et al. Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage[J]. Advanced Functional Materials, 2018, 28(18): 1800394.
ZHENG J C, YANG B Y, WANG X W, et al. Comparative investigation of Na2FeP2O7 sodium insertion material synthesized by using different sodium sources[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4966-4972.
CHEN H Z, ZHANG B, WANG X, et al. CNT-decorated Na3V2(PO4)3 microspheres as a high-rate and cycle-stable cathode material for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3590-3595.
NI J F, WANG W C, WU C, et al. Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture[J]. Advanced Materials, 2017, 29(9): 1605607.
ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries[J]. Chemistry, 2011, 17(51): 14326-14346.
ZHANG W M, WU X L, HU J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J]. Advanced Functional Materials, 2008, 18(24): 3941-3946.
BAI J, XI B J, MAO H Z, et al. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage[J]. Advanced Materials, 2018, 30(35): e1802310.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构