西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
李鑫,男,从事地质灾害防治研究,lixin9@stumail.nwu.edu.cn。
谷天峰,男,博士,教授,从事黄土地质灾害研究,gutf@nwu.edu.cn。
扫 描 看 全 文
李鑫, 谷天峰, 崔博. 基于复电阻率的非饱和黄土频谱特性[J]. 西北大学学报(自然科学版), 2024,54(1):42-52.
LI Xin, GU Tianfeng, CUI Bo. The frequency spectrum characteristics of unsaturated loess based on complex resistivity testing[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):42-52.
李鑫, 谷天峰, 崔博. 基于复电阻率的非饱和黄土频谱特性[J]. 西北大学学报(自然科学版), 2024,54(1):42-52. DOI: 10.16152/j.cnki.xdxbzr.2024-01-006.
LI Xin, GU Tianfeng, CUI Bo. The frequency spectrum characteristics of unsaturated loess based on complex resistivity testing[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):42-52. DOI: 10.16152/j.cnki.xdxbzr.2024-01-006.
使用直流电阻率法进行黄土水分监测时,黄土介质中的容性成分会影响结果的准确性。该文以宜川地区黄土为研究对象,基于复电阻率试验和土水特征测定,获取了非饱和黄土基质吸力与复电阻率参数的关系,揭示了其频谱特性变化规律,推导了黄土饱和度与复电阻率公式。研究结果表明:激励频率与复电阻率的幅值和相位呈负相关关系,在频率小于1 000 Hz时黄土的复电阻率的幅值和相位波动较大,超过1 000 Hz时会逐渐趋于稳定;随着基质吸力的升高,黄土的幅值、实部电阻率和虚部电阻率也逐渐增大,其相关性受通电频率的大小影响;黄土电容量与介电常数随基质吸力的升高逐渐减小;利用实部电阻率和虚部电阻率建立了黄土饱和度复电阻率模型,模型可用于黄土水分变化的监测。研究结果为利用黄土的频散特性进行黄土地质灾害监测提供了新的方法和思路。
The accuracy of the results is influenced by capacitive components. This paper focuses on loess in the Yichuan region and establishes the relationship between unsaturated loess matrix suction and complex resistivity parameters based on complex resistivity tests and soil-water characteristic determinations. It reveals the variation patterns of their spectral characteristics and derives formulas for loess saturation degree and complex resistivity. The research results indicate that the excitation frequency is negatively correlated with the amplitude and phase of complex resistivity. When the frequency is less than 1 000 Hz, the amplitude and phase of loess complex resistivity fluctuate significantly, stabilizing gradually after it exceeds 1 000 Hz. With the increase of matrix suction, the amplitude, real part resistivity, and imaginary part resistivity of loess gradually increase, with their correlation influenced by the applied frequency. Loess capacitance and dielectric constant decrease with the increasing matrix suction. A loess saturation degree-complex resistivity model is established using the real part resistivity and imaginary part resistivity, and the model can be used for monitoring moisture changes in loess. The research results provide new methods and perspectives for utilizing the frequency dispersion characteristics of loess in geological disaster monitoring.
黄土复电阻率法频谱特性基质吸力饱和度复电阻率模型
loesscomplex resistivityspectral characteristicsmatric suctionsaturation-complex resistivity model
KELLY B F J, ACWORTH R I, GREVE A K. Better placement of soil moisture point measurements guided by 2D resistivity tomography for improved irrigation scheduling[J]. Soil Research, 2011, 49(6): 504.
GUNN D A, CHAMBERS J E, UHLEMANN S, et al. Moisture monitoring in clay embankments using electrical resistivity tomography[J]. Construction and Building Materials, 2015, 92: 82-94.
SAURET E S G, BEAUJEAN J, NGUYEN F, et al. Characterization of superficial deposits using electrical resistivity tomography (ERT) and horizontal-to-vertical spectral ratio (HVSR) geophysical methods: A case study[J]. Journal of Applied Geophysics, 2015, 121: 140-148.
DICK J, TETZLAFF D, BRADFORD J, et al. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types[J]. Journal of Hydrology, 2018, 559: 684-697.
WANG Y L, WANG M, GONG S L, et al. Construction of structural reference model for ERT data inversion in heavy metal contaminated sites surveys[J]. International Journal of Applied Systemic Studies, 2018, 8(3): 218.
杨振威, 许江涛, 赵秋芳, 等. 复电阻率法(CR)发展现状与评述[J]. 地球物理学进展, 2015, 30(2): 899-904.
YANG Z W, XU J T, ZHAO Q F, et al. Current tituation and review of Complex Resistivity [J]. Progress in Geophysics, 2015, 30(2): 899-904.
朱勇, 能昌信, 陆晓春, 等. 铬污染土壤超低频复电阻率频散特性[J]. 环境科学研究, 2013, 26(5): 555-560.
ZHU Y, NENG C X, LU X C, et al. The complex resistivity dispersion properties of chromium-contaminated soil in the ultra-low frequency powersupply[J]. Research of Environmental Sciences, 2013, 26(5): 555-560.
CASSIANI G, KEMNA A, VILLA A, et al. Spectral induced polarization for the characterization of free-phase hydrocarbon contamination of sediments with low clay content[J]. Near Surface Geophysics, 2009, 7(5/6): 547-562.
VINEGAR H J, WAXMAN M H. Induced polarization of shaly sands[J]. Geophysics, 1984, 49(8): 1267-1287.
刘松玉. 污染场地测试评价与处理技术[J]. 岩土工程学报, 2018, 40(1): 1-37.
LIU S Y. Geotechnical investigation and remediation for industrial contaminated sites[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1):1-37.
SANDLER J, LI Y Z, HORNE R N, et al. Effects of fracture and frequency on resistivity in different rocks[C]//EUROPEC/EAGE Conference and Exhibition. Amsterdam: SPE, 2009:SPE-119872-MS.
LI J J, KE S Z, YIN C F, et al. A laboratory study of complex resistivity spectra for predictions of reservoir properties in clear sands and shaly sands[J]. Journal of Petroleum Science and Engineering, 2019, 177: 983-994.
潘保芝, 阿茹罕, 郭宇航, 等. 裂缝性岩石低频下复电阻率与饱和度关系研究[J]. 地球物理学报, 2021, 64(10): 3774-3787.
PAN B Z, A R H, GUO Y H, et al. Study on the relationship between complex resistivity and water saturation in fractured rock at low frequency[J]. Chinese Journal of Geophysics, 2021, 64(10):3774-3787.
XU X K, ZHANG Y G, HOU J X. Coalresistivit-y anisotropy and frequency response characteristics[C]//Proceedings of the 4th International Somposium Mining and Safty.Beijing: China Coal Industry Press House, 2012:402-406.
马衍坤, 刘泽功, 成云海, 等. 煤体水力压裂过程中孔壁应变及电阻率响应特征试验研究[J]. 岩石力学与工程学报, 2016, 35(S1): 2862-2868.
MA Y K, LIU Z G, CHENG Y H, et al. Laboratory test research on borehole strain and electrical resistivity response characteristic of coal samples in hydraulic fracture process [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1):2862-2868.
郭跃辉, 雷东记, 张玉贵, 等. 水力压裂煤体复电阻率频散特征试验研究[J]. 煤炭科学技术, 2021, 49(5): 198-202.
GUO Y H, LEI D J, ZHANG Y G, et al. Experimental study on dispersion characteristics of complex resistivity of hydraulic fracturing coal[J]. Coal Science and Technology, 2021, 49(5): 198-202.
MANSOOR N, SLATER L. On the relationship between iron concentration and induced polarization in marsh soils[J]. Geophysics, 2007, 72(1): A1-A5.
能昌信, 刘玉强, 刘豪睿, 等. 铬污染土壤的导电性、频谱激电性和介电特性的实验结果[J]. 环境科学, 2011, 32(3): 758-765.
NAI C X, LIU Y Q, LIU H R, et al. Experiment results of conduction, spectral induced polarization and dielectric characteristics for chrome-contaminated soil[J]. Environmental Science, 2011, 32(3): 758-765.
PERSONNA Y R, SLATER L, NTARLAGIANNIS D, et al. Complex resistivity signatures of ethanol in sand-clay mixtures[J]. Journal of Contaminant Hydrology, 2013, 149: 76-87.
USTRA A, SLATER L, NTARLAGIANNIS D, et al. Spectral Induced Polarization (SIP) signatures of clayey soils containing toluene[J]. Near Surface Geophysics, 2012, 10(6): 503-515.
张振宇, 许伟伟, 邓亚平, 等. 三氯乙烯污染土壤的复电阻率特征和频谱参数研究[J]. 地学前缘, 2021, 28(5): 114-124.
ZHANG Z Y, XU W W, DENG Y P, et al. Complex resistivity properties and spectral parameters of TCE contaminated soil[J]. Earth Science Frontiers, 2021, 28(5): 114-124.
BÉRUBÉ C L, CHOUTEAU M, SHAMSIPOUR P, et al. Bayesian inference of spectral induced polarization parameters for laboratory complex resistivity measurements of rocks and soils[J]. Computers & Geosciences, 2017, 105: 51-64.
KEMNA A, BINLEY A, RAMIREZ A, et al. Complex resistivity tomography for environmental applications[J]. Chemical Engineering Journal, 2000, 77(1/2): 11-18.
崔博, 王光进, 刘文连, 等. 强降雨条件下孔隙气压作用的高台阶排土场渗流与稳定性[J].工程科学学报, 2021, 43(3): 365-375.
CUI B, WANG G J, LIU W L, et al. Seepage and stability analysis of pore air pressure on a high-bench dump under heavy rainfall[J].Chinese Journal of Engineering, 2021, 43(3):365-375.
VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
YU D J, HUANG Q B, KANG X S, et al. The unsaturated seepage process and mechanism of internal interfaces in loess-filled slopes during intermittent rainfall[J]. Journal of Hydrology, 2023, 619: 129317.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构