1.西安交通大学 人居环境与建筑工程学院,陕西 西安 710049
2.西安交通大学城市学院 土木建筑工程学院,陕西 西安 710018
3.长安大学 地质工程与测绘学院,陕西 西安 710064
4.国家电投集团黄河上游水电开发有限责任公司,青海 西宁 810001
5.中国电建集团西北勘测设计研究院有限公司,陕西 西安 710065
代倩,女,博士生,从事黄土动力学试验与数值模拟等研究,daiqian68@stu.xjtu.edu.cn。
廖红建,女,博士,教授,从事岩土本构关系、岩土工程减灾与防灾等研究,hjliao@mail.xjtu.edu.cn。
扫 描 看 全 文
代倩, 廖红建, 康孝森, 等. 循环加载下压实黄土的边界面塑性本构模型[J]. 西北大学学报(自然科学版), 2024,54(1):26-32.
DAI Qian, LIAO Hongjian, KANG Xiaosen, et al. Bounding surface plasticity model of compacted loess under cyclic loading[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):26-32.
代倩, 廖红建, 康孝森, 等. 循环加载下压实黄土的边界面塑性本构模型[J]. 西北大学学报(自然科学版), 2024,54(1):26-32. DOI: 10.16152/j.cnki.xdxbzr.2024-01-004.
DAI Qian, LIAO Hongjian, KANG Xiaosen, et al. Bounding surface plasticity model of compacted loess under cyclic loading[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):26-32. DOI: 10.16152/j.cnki.xdxbzr.2024-01-004.
压实黄土的动应力应变关系预测是黄土高原平山填方工程长期运营涉及的关键问题之一,已有模型预测压实黄土的动本构关系难度较大。该文在边界面塑性框架下,引入动态映射法则,提出了一个反映应变累积的循环加载塑性模量表达式,构建了循环加载条件下压实黄土边界面塑性本构模型,分析了循环应力比与围压对应力应变关系与模量的影响规律,采用压实粉质黄土动三轴试验结果进行了验证。结果表明,该循环加载塑性模量基本反映了压实黄土的应变累积行为,所构建的本构模型考虑了循环应力比对动应力应变关系与模量的影响,可为填方压实黄土长期变形分析提供参考。
The prediction of the dynamic stress-strain relationship of compacted loess is essential in the projects of gully reclamation for farming and cutting mountains for city building in Loess Plateau. It is still difficult to predict the behaviors. To fill the gap, this paper formulates a bounding surface plasticity model for compacted loess subjected to cyclic loading. Specifically, a plastic modulus for cyclic loading is proposed to reflect the behaviors of accumulated strain, and an updated mapping rule is introduced. Furthermore, the influence of confining pressure and cyclic stress ratio on stress-strain relationship and modulus is shown by several case studies, which is verified by experimental tests of compacted loess. The results show that the plastic modulus reflects accumulated strain of compacted loess.The constitutive model considers the effect of cyclic stress ratio on dynamic stress-strain relationship and modulus of compacted loess because of the proposed plastic modulus and updated mapping rule. The results can give reference for analysis of long-term deformation of loess-filled foundation.
压实黄土循环加载应力应变本构模型塑性模量
compacted loesscyclic loadingstress-strainconstitutive modelplastic modulus
CORTI R, DIAMBRA A, WOOD D M, et al. Memory surface hardening model for granular soils under repeated loading conditions[J]. Journal of Engineering Mechanics, 2016, 142(12):04016102.
WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J].Journal of Engineering Mechanics, 1990, 116(5):983-1001.
方火浪, 沈扬, 郑浩, 等. 砂土三维多重机构边界面模型[J].岩土工程学报, 2017, 39 (7): 1189-1195.
FANG H L, SHEN Y, ZHENG H, et al. Three-dimensional multi-mechanism bounding surface model for sands[J].Chinese Journal of Geotechnical Engineering, 2017, 39 (7): 1189-1195.
董建勋, 刘海笑, 李洲. 适用于砂土循环加载分析的边界面塑性模型[J]. 岩土力学, 2019, 40(2): 684-692.
DONG J X, LIU H X, LI Z. A bounding surface plasticity model of sand for cyclic loading analysis[J]. Rock and Soil Mechanics, 2019, 40(2): 684-692.
迟明杰, 赵成刚, 李小军. 剪胀性砂土边界面模型的研究[J]. 工程地质学报, 2008, 16(3): 128-134.
CHI M J, ZHAO C G, LI X J. A bounding surface plasticity based constitutive model for dilatant sand [J]. Journal of Engineering Geology, 2008, 16(3): 128-134.
WOO S I, SALGADO R. Bounding surface modeling of sand with consideration of fabric and its evolution during monotonic shearing[J]. International Journal of Solids and Structures, 2015, 63:277-288.
FANG H L, ZHENG H, ZHENG J. Micromechanics-based multimechanism bounding surface model for sands[J]. International Journal of Plasticity, 2017, 90:242-266.
XIAO Y, LIU H L, LIU H, et al. Unified plastic modulus in the bounding surface plasticity model[J]. Science China Technological Sciences, 2016, 59(6):932-940.
HU C, LIU H X, HUANG W. Anisotropic bounding-surface plasticity model for the cyclic shakedown and degradation of saturated clay[J]. Computers and Geotechnics, 2012, 44: 34-47.
KIM T, JUNG Y H. A new perspective on bounding surface plasticity: The moving projection origin[J]. KSCE Journal of Civil Engineering, 2017, 21(3):652-658.
ZHOU C, NG C W W. Simulating the cyclic behaviour of unsaturated soil at various temperatures using a bounding surface model[J]. Géotechnique, 2016, 66(4):344-350.
RUSSELL A R, KHALILI N. A unified bounding surface plasticity model for unsaturated soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(3):181-212.
YANG C, CUI Y J, PEREIRA J M, et al. A constitutive model for unsaturated cemented soils under cyclic loading[J]. Computers and Geotechnics, 2008, 35(6):853-859.
FU Y K, GAO Z W, HONG Y, et al. Destructuration of saturated natural loess: From experiments to constitutive modeling[J]. International Journal of Damage Mechanics, 2021, 30(4):575-594.
褚峰, 张宏刚, 邵生俊. 陇东Q3结构性黄土压剪损伤本构模型试验研究[J].岩土力学, 2019, 40(10): 3855-3870.
CHU F, ZHANG H G, SHAO S J. Experimental study of constitutive model of Longdong Q3 structural loess with compressive and shearing damage [J]. Rock and Soil Mechanics, 2019, 40(10): 3855-3870.
侯乐乐, 翁效林, 崔艺铖, 等. K0固结结构性黄土的各向异性本构模型[J].岩石力学与工程学报, 2022, 41(10): 2124-2134.
HOU L L, WENG X L, CUI Y C, et al. Critical state constitutive model of K0 consolidated structural loess[J].Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 2124-2134.
姚志华, 陈正汉, 方祥位, 等. 非饱和原状黄土弹塑性损伤流固耦合模型及其初步应用[J].岩土力学, 2019, 40(1): 216-226.
YAO Z H, CHEN Z H, FANG X W, et al. Elastoplastic damage seepage-consolidation coupled model of unsaturated intact loess and its application [J]. Rock and Soil Mechanics, 2019, 40(1): 216-226.
蒋明镜. 现代土力学研究的新视野:宏微观土力学[J].岩土工程学报, 2019, 41(2): 195-254.
JIANG M J. New paradigm for modern soil mechanics:Geomechanics from micro to macro [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254.
康孝森, 廖红建, 黄强兵, 等. 结构性黄土的临界压力比及其边界面塑性本构模型预测[J].岩土力学, 2022, 43(6): 1469-1480.
KANG X S, LIAO H J, HUANG Q B, et al. Spacing ratio of structural loess and its prediction using bounding surface plasticity model [J]. Rock and Soil Mechanics, 2022, 43(6): 1469-1480.
崔广芹. 饱和黄土动力本构模型及地铁隧道周围土层变形分析[D]. 西安: 西安建筑科技大学, 2014.
JUNG Y H, LEE J H. Experimental validation of the radial mapping rule in bounding surface plasticity model[J]. Journal of the Korean Geotechnical Society, 2013, 29(1): 171-181.
KAN M E, TAIEBAT H A, KHALILI N. Simplified mapping rule for bounding surface simulation of complex loading paths in granular materials[J]. International Journal of Geomechanics, 2014, 14(2):239-253.
XU L, COOP M R. The mechanics of a saturated silty loess with a transitional mode[J]. Géotechnique, 2017, 67(7): 581-596.
KANG X S, LIAO H J, HUANG Q B, et al. Enhanced anisotropic bounding surface plasticity model considering modified spacing ratio of anisotropically consolidated clay[J]. Acta Geotechnica, 2022, 17(6): 2213-2233.
DAFALIAS Y F, TAIEBAT M. Anatomy of rotational hardening in clay plasticity[J]. Géotechnique, 2013, 63(16): 1406-1418.
SEIDALINOV G, TAIEBAT M. Bounding surface SANICLAY plasticity model for cyclic clay behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(7):702-724.
代倩, 廖红建, 康孝森, 等. 动荷载下填方体压实黄土动应变与动孔压变化规律研究[J].岩土工程学报, 2021, 43(S1): 235-240.
DAI Q, LIAO H J, KANG X S, et al. Behaviors of dynamic strain and pore pressure of compacted loess in loess-filled foundation induced by dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 235-240.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构