西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
焦少通,男,从事工程地质研究,2396025166@qq.com。
王家鼎,男,教授,博士生导师,从事水文地质与工程地质研究,wangjiading029@163.com。
扫 描 看 全 文
焦少通, 王家鼎, 张登飞, 等. 干湿循环作用下黄土厚度对其裂隙发育的影响[J]. 西北大学学报(自然科学版), 2024,54(1):1-10.
JIAO Shaotong, WANG Jiading, ZHANG Dengfei, et al. Study on the effect of thickness of loess on its crack development under the action of dry-wet cycles[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):1-10.
焦少通, 王家鼎, 张登飞, 等. 干湿循环作用下黄土厚度对其裂隙发育的影响[J]. 西北大学学报(自然科学版), 2024,54(1):1-10. DOI: 10.16152/j.cnki.xdxbzr.2024-01-001.
JIAO Shaotong, WANG Jiading, ZHANG Dengfei, et al. Study on the effect of thickness of loess on its crack development under the action of dry-wet cycles[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):1-10. DOI: 10.16152/j.cnki.xdxbzr.2024-01-001.
黄土体长期处于降雨和蒸发的湿热耦合环境,极易诱发土体裂隙产生,显著弱化土体的结构性和完整性,从而影响工程区域的建设。因此,对干湿循环作用下不同厚度的黄土开裂特性研究十分必要。该文通过室内干湿循环试验,记录试样的含水率变化和裂隙发育情况,利用数字图像处理技术,结合分形维数对裂隙网络进行分析。试验结果表明,蒸发路径和含水量的不同导致土体水分蒸发速度不同,土体越厚,水分蒸发速度越慢。界面摩擦力影响土体开裂过程,土体越厚,裂隙发育越慢,裂纹网络复杂性越低。随着干化的进行,界面摩擦力逐渐降低,土体收缩明显,干湿循环效应导致土体颗粒重新组合,加快水分蒸发过程,土体表面会不断劣化。研究结果可为地质灾害防治提供指导。
The loess with different thickness is in the humid-thermal coupling environment of rainfall-evaporation for a long period of time, which is very prone to induce the generation of cracks in the loess, significantly weakening the structural and integrity of the loess, thus affecting the construction of the project area. Therefore, it is necessary to study the effect of soil thickness on the cracking characteristics of loess under the action of wet dry cycles. In this paper, a series of indoor wet dry cycle tests were carried out to record the water content change and crack development of the specimens in real time, and the crack network was analyzed by using digital image processing technology combined with fractal dimension. The test results show that: the different evaporation paths and water contents lead to inconsistent water evaporation rate of the soil, and the greater the thickness of the loess, the slower its water evaporation rate; interfacial friction affects the cracking process of the soil, and the thicker the soil, the slower the development of cracks, and the lower the complexity of the crack network. As drying proceeds, the interfacial friction gradually decreases and the soil shrinks significantly. The dry-wet cycle effect will lead to the reassembly of soil particles, accelerate the water evaporation process, and the soil surface will deteriorate continuously. The results of the study can provide some guidance for the prevention and control of geologic hazards in the Loess Plateau region.
干湿循环土体厚度裂隙特征分形维数摩擦力
dry-wet cyclessoil thicknessfracture characteristicsfractal dimensionfriction
彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684-691.
PENG J B, LIN H Z WANG Q Y, et al.The critical issues and creative concepts in mitigation research of loess geological hazards[J].Journal of Engineering Geology, 2014, 22(4): 684-691.
王景明, 倪玉兰, 孙建中. 黄土构造节理研究及其应用[J]. 工程地质学报, 1994, 2(4): 31-42.
WANG J M, NI Y L, SUN J Z. A study on structural joints in loess and its practical applications[J]. Journal of Engineering Geology, 1994, 2(4):31-42.
雷祥义. 黄土高原地质灾害与人类活动[M].北京: 地质出版社, 2001.
WANG J D, ZHANG D F, WANG N Q, et al. Mechanisms of wetting-induced loess slope failures[J]. Landslides, 2019, 16(5): 937-953.
TANG C S, CUI Y J, TANG A M, et al. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils[J]. Engineering Geology, 2010, 114(3/4): 261-266.
RAYHANI M H, YANFUL E K, FAKHER A. Desiccation-induced cracking and its effect on the hydraulic conductivity of clayey soils from Iran[J]. Canadian Geotechnical Journal, 2007, 44(3): 276-283.
ZENG H, TANG C S, ZHU C, et al. Desiccation cracking of soil subjected to different environmental relative humidity conditions[J]. Engineering Geology, 2022, 297: 106536.
卢全中, 彭建兵, 陈志新, 等. 黄土高原地区黄土裂隙发育特征及其规律研究[J]. 水土保持学报, 2005, 19(5): 193-196.
LU Q Z, PENG J B, CHEN Z X, et al. Research on characteristics of crack sand fissures of loess and their distribution in Loess Plateau of China[J]. Journal of Soil and Water Conservation, 2005, 19(5):193-194.
叶万军, 李长清, 杨更社, 等. 增湿减湿作用下黄土裂隙演化规律研究[J]. 工程地质学报, 2017, 25(2): 376-383.
YE W J, LI C Q, YANG G S, et al.Evloution of loess crack under action of dehumidification-humidification[J]. Journal of Engineering Geology, 2017, 25(2): 376-383.
苏立君, 赵茜, 刘华, 等. 干湿交替过程中原状黄土的胀缩变形特性及裂隙形态演化规律[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(3): 255-267.
SU L J, ZHAO Q, LIU H, et al. Swelling and shrinkage behaviors and evolution law of crack morphology of undisturbed loess during wetting-drying cycles[J]. Journal of Tianjin University(Science and Technology), 2021, 54(3): 255-267.
郭鸿, 马帅帅, 王普, 等. 土工格栅抑制黄土干缩裂隙试验分析[J]. 水资源与水工程学报, 2020, 31(4): 118-123.
GUO H, MA S S, WANG P, et al.Analysis of loess dry shrinkage cracking restrained by geogrid[J].Journal of Water Resources & Water Engineering, 2020, 31(4): 118-123.
抗兴培, 刘晓, 王彪龙, 等. 黄土坡顶裂缝成因及演化过程分析[J]. 安全与环境工程, 2019, 26(2): 45-51.
KANG X P, LIU X, WANG B L, et al. Analysis of causes and evolution process of cracks on top of loess slope[J]. Safety and Environmental Engineering, 2019, 26(2): 45-51.
王娜, 王佳妮, 张晓明, 等.控制厚度条件下崩岗土体的裂隙演化特征[J].水土保持学报, 2021, 35(6):175-182.
WANG N, WANG J N, ZHANG X M, et al.Evolution characteristics of cracks in Benggang soil under controlled thickness[J].Journal of Soil and Water Conservation, 2021, 35(6):175-182.
骆赵刚, 汪时机, 张继伟, 等. 膨胀土裂隙发育的厚度效应试验研究[J]. 岩土工程学报, 2020, 42(10): 1922-1930.
LUO Z G, WANG S J, ZHANG J W, et al.Thickness effect on crack evolution of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1922-1930.
曾浩, 唐朝生, 刘昌黎, 等. 控制厚度条件下土体干缩开裂的界面摩擦效应[J]. 岩土工程学报, 2019, 41(3): 544-553.
ZENG H, TANG C S, LIU C L, et al.Effects of boundary friction and layer thickness on desiccation cracking behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 544-553.
高海通. 干湿交替环境中黄土裂隙扩展多尺度研究[J]. 辽宁工程技术大学学报(自然科学版), 2023, 42(1): 53-60.
GAO H T. Multi-scale research on crack propagation of loess under dry-wet cycles[J].Journal of Liaoning Technical University(Natural Science), 2023, 42(1):53-60.
唐朝生, 崔玉军, ANH-MINH T, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279.
TANG C S, CUI Y J, ANH-MINH T, et al.Volumetric shrinkage characteristics of soil during drying[J].Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279.
LIU C, TANG C S, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80.
方华强, 蒋春勇, 王成龙, 等. 厚度及温度影响下重庆淤泥质土裂隙形态试验研究[J]. 岩石力学与工程学报, 2021, 40(12): 2570-2583.
FANG H Q, JIANG C Y, WANG C L, et al. Effects of layer thickness and temperature on the crack morphology of Chongqing silt[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2570-2583.
唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018, 40(8): 1415-1423.
TANG C S, SHI B, CUI Y J, et al. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1415-1423.
汤连生, 张鹏程, 王洋, 等. 土体内外摩擦及摩擦强度试验研究[J]. 岩石力学与工程学报, 2004, 23(6): 974-979.
TANG L S, ZHANG P C, WANG Y, et al.Testing study on internal and external friction and Frictional strength of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 974-979.
张鹏程, 汤连生, 邓钟尉, 等. 非饱和土湿吸力与含水率的定量关系研究[J].岩土工程学报, 2012, 34(8): 1453-1457.
ZHANG P C, TANG L S, DENG Z W, et al. Quantitative relationship between wet suction and water content of unsaturated soils[J].Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1453-1457.
TIAN B G, CHENG Q, TANG C S, et al. Healing behaviour of desiccation cracks in a clayey soil subjected to different wetting rates[J]. Engineering Geology, 2023, 313: 106973.
刘海松, 倪万魁, 颜斌, 等. 黄土结构强度与湿陷性的关系初探[J]. 岩土力学, 2008, 29(3): 722-726.
LIU H S, NI W K, YAN B, et al. Discussion on relationship between structural strength and collapsibility of loess[J].Rock and Soil Mechanics, 2008, 29(3): 722-726.
FENG L, LIN H, ZHANG M, et al. Development and evolution of loess vertical joints on the Chinese Loess Plateau at different spatiotemporal scales[J]. Engineering Geology, 2020, 265: 105372.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构