1.西南交通大学 经济管理学院,四川 成都 610031
2.服务科学与创新四川省重点实验室,四川 成都 610031
3.西南交通大学 计算机与人工智能学院,四川 成都 611756
[ "刘盾,博士,教授,博士生导师,清华大学博士后,美国Carnegie Mellon大学和加拿大Regina大学访问学者,四川省杰出青年科技人才,四川省学术和技术带头人,CCF杰出会员。2022年和2023年入选全球前2%顶尖科学家终身成就榜,主要研究方向为大数据决策分析、粒计算与知识发现。任中国人工智能学会粒计算与知识发现专委会常务委员、中国人工智能学会知识工程与分布智能专委会常务委员、四川省人工智能学会理事、四川省电子商务教指委委员。在IEEETFS、IEEESMCA、INS、I&M、IJPR等国内外信息科学和管理科学期刊发表学术论文160余篇,其中SCI检索80余篇,Google Scholar引用次数6 000余次,H-index指数43。主持国家自然基金4项,主编专著2部。曾获得四川省社会科学优秀成果二等奖2项、三等奖2项。" ]
扫 描 看 全 文
刘盾, 叶晓庆, 李天瑞. 三支决策——基于可解释性研究视角[J]. 西北大学学报(自然科学版), 2023,53(6):991-1003.
LIU Dun, YE Xiaoqing, LI Tianrui. Three-way decision based on the interpretability research perspective[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):991-1003.
刘盾, 叶晓庆, 李天瑞. 三支决策——基于可解释性研究视角[J]. 西北大学学报(自然科学版), 2023,53(6):991-1003. DOI: 10.16152/j.cnki.xdxbzr.2023-06-009.
LIU Dun, YE Xiaoqing, LI Tianrui. Three-way decision based on the interpretability research perspective[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):991-1003. DOI: 10.16152/j.cnki.xdxbzr.2023-06-009.
该文从可解释性研究视角探讨了三支决策的相关理论与方法。首先,阐明了三代粗糙集模型的演化过程,厘清三支决策的发展轨迹;其次,聚焦三支决策与粒计算的深度融合,介绍了序贯三支决策和层次三支决策的相关理论与方法;再次,分析三支分类的有效性,揭示了三支决策能够增强分类效果的内在原因;最后,从认知视角诠释了三支决策与人工智能融合的机理,并给出了三支决策可解释性未来的研究方向。
This paper mainly discusses the theories and methods with the interpretability research perspective. Firstly, we illuminate the evolutionary process on three generations of rough set models, and clarify the development track of three-way decision. Secondly, we focus on the deep integration between three-way decision and granular computing, and introduce the corresponding theories and methods of sequential three-way decision and hierarchical three-way decision. Thirdly, we analyze the effectiveness of three-way classification, and reveal the inner reason why the three-way decision can enhance the classification effect. Finally, we interpret the fusion mechanism between three-way decision and interpretive AI with a cognitive perspective, and give the research directions of interpretability three-way decision in future.
三支决策粒计算粗糙集理论决策粗糙集
three-way decisionsgranular computingroughset theorydecision-theoretic rough sets
YAO Y Y. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180(3): 341-353.
YAO Y Y. Three-way decision and granular computing[J]. International Journal of Approximate Reasoning, 2018, 103: 107-123.
YAO Y Y, WONG S K M. A decision theoretic framework for approximating concepts[J]. International Journal of Man-Machine Studies, 1992, 37(6): 793-809.
刘盾, 梁德翠. 广义三支决策与狭义三支决策[J]. 计算机科学与探索, 2017, 11(3): 502-510.
LIU D, LIANG D C. Generalized three-way decisions and special three-way decisions[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(3): 502-510.
刘盾, 李天瑞, 杨新, 等. 三支决策:基于粗糙集与粒计算研究视角[J]. 智能系统学报, 2019, 14(6): 1111-1120.
LIU D, LI T R, YANG X, et al. The temporality and spatiality of three-way decisions[J]. CAAI Transactions on Intelligent Systems, 2019, 14(6): 1111-1120.
刘盾, 李天瑞, 梁德翠, 等. 三支决策的时空性[J]. 智能系统学报, 2019, 14(1): 141-149.
LIU D, LI T R, LIANG D C, et al. Three-way decisions: The perspective of rough sets and granular computing[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 141-149.
YAO Y Y, DENG X F. Sequential three-way decisions with probabilistic rough sets[C]//Proceeding of 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing, Banff, AB, Canada: IEEE, 2011: 120-125.
LIU D, LI T R, LIANG D C. Three-way decisions in dynamic decision-theoretic rough sets[C]//Proceeding of 8th International Conference on Rough Sets and Knowledge Technology.Berlin, Heidelberg: Springer, 2013: 291-301.
GAO C, YAO Y Y. Actionable strategies in three-way decisions[J]. Knowledge-Based Systems, 2017, 133: 141-155.
JIANG C M, YAO Y Y. Effectiveness measures in movement-based three-way decisions[J]. Knowledge-Based Systems, 2018, 160: 136-143.
YANG X, LI T R, FUJITA H, et al. A unified model of sequential three-way decisions and multilevel incremental processing[J]. Knowledge-Based Systems, 2017, 134: 172-188.
XU J F, MIAO D Q, ZHANG Y J, et al. A three-way decisions model with probabilistic rough sets for stream computing[J]. International Journal of Approximate Reasoning, 2017, 88: 1-22.
QIAN J, LIU C H, MIAO D Q, et al. Sequential three-way decisions via multi-granularity[J]. Information Sciences, 2020, 507: 606-629.
FANG Y, GAO C, YAO Y Y. Granularity-driven sequential three-way decisions: A cost-sensitive approach to classification[J]. Information Sciences, 2020, 507: 644-664.
ZHANG Y B, MIAO D Q, WANG J Q, et al. A cost-sensitive three-way combination technique for ensemble learning in sentiment classification[J]. International Journal of Approximate Reasoning, 2019, 105: 85-97.
WU Y X, LUO L F, LI Y, et al. NTP-Miner: Non-overlapping three-way sequential pattern mining[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(3): 51.
LI H X, ZHANG L B, HUANG B, et al. Sequential three-way decision and granulation for cost-sensitive face recognition[J]. Knowledge-Based Systems, 2016, 91: 241-251.
LI H X, ZHANG L B, ZHOU X Z, et al. Cost-sensitive sequential three-way decision modeling using a deep neural network[J]. International Journal of Approximate Reasoning, 2017, 85: 68-78.
ZHANG L B, LI H X, ZHOU X Z, et al. Sequential three-way decision based on multi-granular autoencoder features[J]. Information Sciences, 2020, 507: 630-643.
SAVCHENKO A V. Fast inference in convolutional neural networks based on sequential three-way decisions[J]. Information Sciences, 2021, 560: 370-385.
QIAN Y H, ZHANG H, SANG Y L, et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(1): 225-237.
苗夺谦, 徐菲菲, 姚一豫, 等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2): 2351-2363.
MIAO D Q, XU F F, YAO Y Y, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2): 2351-2363.
王国胤, 张清华, 马希骜, 等. 知识不确定性问题的粒计算模型[J]. 软件学报, 2011, 22(4): 676-694.
WANG G Y, ZHANG Q H, MA X A, et al. Granular computing models for knowledge uncertainty[J]. Journal of Software, 2011, 22(4): 676-694.
ZHANG X Y, MIAO D Q. Three-layer granular structures and three-way informational measures of a decision table[J]. Information Sciences, 2017, 412/413: 67-86.
YUE X D, ZHOU J, YAO Y Y, et al. Shadowed neighborhoods based on fuzzy rough transformation for three-way classification[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(5): 978-991.
CHEN J, XU Y, ZHAO S, et al. AH3: An adaptive hierarchical feature representation model for three-way decision boundary processing[J]. International Journal of Approximate Reasoning, 2021, 130: 259-272.
YANG X, LI T R, LIU D, et al. A temporal-spatial composite sequential approach of three-way granular computing[J]. Information Sciences, 2019, 486: 171-189.
WU W Z, LEUNG Y. Optimal scale selection for multi-scale decision tables[J]. International Journal of Approximate Reasoning, 2013, 54(8): 1107-1129.
LI F, HU B Q. A new approach of optimal scale selection to multi-scale decision tables[J]. Information Sciences, 2017, 381: 193-208.
HAO C, LI J H, FAN M, et al. Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J]. Information Sciences, 2017, 415/416: 213-232.
HUANG B, WU W Z, YAN J J, et al. Inclusion measure-based multi-granulation decision-theoretic rough sets in multi-scale intuitionistic fuzzy information tables[J]. Information Sciences, 2020, 507: 421-448.
LUO C, LI T R, HUANG Y Y, et al. Updating three-way decisions in incomplete multi-scale information systems[J]. Information Sciences, 2019, 476: 274-289.
ZHANG Q H, CHENG Y L, ZHAO F, et al. Optimal scale combination selection integrating three-way decision with Hasse Diagram[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3675-3689.
YU H, LIU Z G, WANG G Y. An automatic method to determine the number of clusters using decision theoretic rough set[J]. International Journal of Approximate Reasoning, 2014, 55(1): 101-115.
SHEN W, WEI Z H, LI Q W, et al. Three-way decisions based blocking reduction models in hierarchical classification[J]. Information Sciences, 2020, 523: 63-76.
SHE Y H, QIAN Z H, HE X L, et al. On generalization reducts in multi-scale decision tables[J]. Information Sciences, 2021, 555: 104-124.
HUANG X F, ZHAN J M. A three-way decision approach based on regret theory in multi-scale decision information systems[J]. Information Sciences, 2021, 581: 711-739.
LIU D. The effectiveness of three-way classification with interpretable perspective[J]. Information Sciences, 2021, 567: 237-255.
YAO Y Y. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181(6): 1080-1096.
刘盾, 姚一豫, 李天瑞. 三枝决策粗糙集[J]. 计算机科学, 2011, 38(1): 246-250.
LIU D, YAO Y Y, LI T R. Three-way decision-theoretic rough sets[J]. Computer Science, 2011, 38(1): 246-250.
YIN L J, ZHANG Q H, ZHAO F, et al. Superiority of three-way decisions from the perspective of probability[J]. Artificial Intelligence Review, 2023, 56(2): 1263-1295.
YAO Y Y. Three-way decisions and cognitive computing[J]. Cognitive Computations, 2016, 8(4): 543-554.
YAO Y Y. A triarchic theory of granular computing[J]. Granular Computing, 2016, 1(2): 145-157.
YAO Y Y. Symbols-Meaning-Value (SMV) space as a basis for a conceptual model of data science[J]. International Journal of Approximate Reasoning, 2022, 144: 113-128.
YAO Y Y. Tri-level thinking: Models of three-way decision[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(5): 947-959.
YAO Y Y. The Dao of three-way decision and three-world thinking[J]. International Journal of Approximate Reasoning, 2023, 162: 109032.
LI J H, MEI C L, XU W H, et al. Concept learning via granular computing: A cognitive viewpoint[J]. Information Sciences, 2015, 298: 447-467.
LI J H, HUANG C C, QI J J, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378: 244-263.
XU W H, PANG J Z, LUO S Q. A novel cognitive system model and approach to transformation of information granules[J]. International Journal of Approximate Reasoning, 2014, 55(3): 853-866.
WANG P X, YAO Y Y. A three-way clustering method based on mathematical morphology[J]. Knowledge-Based Systems, 2018, 155: 54-65.
WU W Z, LEUNG Y, MI J S. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1461-1474.
ZHI H L, LI J H. Granule description of incomplete data: A cognitive viewpoint[J]. Cognitive Computation, 2022, 14(6): 2108-2119.
QI J J, QIAN T, WEI L. The connections between three-way and classical concept lattices[J]. Knowledge-Based Systems, 2016, 91: 143-151.
REN R S, WEI L. The attribute reductions of three-way concept lattices[J]. Knowledge-Based Systems, 2016, 99: 92-102.
张钹. 后深度学习时代的人工智能[EB/OL]. [2016-10-21]. https://baike.baidu.com/tashuo/browse/content?id=7aefb4f4090e5877f2dc759fhttps://baike.baidu.com/tashuo/browse/content?id=7aefb4f4090e5877f2dc759f.
中国人工智能系列白皮书——粒计算与知识发现[EB/OL]. [2022-07-01]. https://www.caai.cn/index.php?s=/home/article/detail/id/2290.htmlhttps://www.caai.cn/index.php?s=/home/article/detail/id/2290.html.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构