1.西北大学 地质学系/榆林碳中和学院/二氧化碳捕集与封存国家地方联合工程研究中心/陕西省碳中和技术重点实验室,陕西 西安 710069
2.国家能源集团能锦界能源有限责任公司,陕西 神木 719300
[ "屈红军,西北大学地质学系及碳中和学院教授,博士生导师。1988年毕业于西北大学地质系,分别于1995年及2003年在西北大学获得理学硕士及博士学位,2004—2006年在中国科学院广州地球化学研究所从事博士后研究,主要从事储层沉积学及CO2地质封存研究。在沉积学及成藏地质学研究方面有一定的建树,尤其对鄂尔多斯盆地及世界深水海洋油气的分布及聚集规律进行了深入研究,取得了较丰硕的成果,建立了全球深水油气数据库。主持承担各类国家级、省部级及横向合作课题30余项,研究成果以第一作者或者通讯作者发表论文70余篇,出版专著一部;成果获陕西省高等学校科学技术奖一等奖1项,陕西省科学技术奖三等奖1项。现任国际古地理学会(ISP)理事、中国矿物岩石地球化学学会岩相古地理专业委员会委员、《天然气地球科学》《古地理学报》《非常规油气》杂志编委。" ]
李鹏,男,博士生,从事CO2地质封存研究,lpenggeo@126.com。
扫 描 看 全 文
屈红军, 李鹏, 李严, 等. 咸水层CO2不同捕获机理封存量计算方法及应用范围[J]. 西北大学学报(自然科学版), 2023,53(6):913-925.
QU Hongjun, LI Peng, LI Yan, et al. Calculation and application scope of storage capacity of different CO2 trapping mechanisms in saline aquifers[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):913-925.
屈红军, 李鹏, 李严, 等. 咸水层CO2不同捕获机理封存量计算方法及应用范围[J]. 西北大学学报(自然科学版), 2023,53(6):913-925. DOI: 10.16152/j.cnki.xdxbzr.2023-06-004.
QU Hongjun, LI Peng, LI Yan, et al. Calculation and application scope of storage capacity of different CO2 trapping mechanisms in saline aquifers[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):913-925. DOI: 10.16152/j.cnki.xdxbzr.2023-06-004.
通过分析咸水层CO,2,地质封存过程中不同捕获机理,探究不同CO,2,捕获机理下的封存量计算方法,在CO,2,咸水层地质封存工程或数值模拟调研分析的基础上,探讨咸水层CO,2,不同捕获机理封存量计算方法的应用范围。综合分析表明,容积法可应用于地质评价阶段的不同尺度地质单元的CO,2,构造捕获封存量计算,代表了评价单元的最大封存潜力,在选取合理的工程、经济等参数基础上,可进行更高潜力级别封存量的计算;长时间尺度的CO,2,束缚气捕获、溶解捕获、矿物捕获3种计算方法,应用范围为场地级或灌注级的某一时间点或时间段的实际封存量计算,只有依据封存工程或封存场地建立地质模型,并进行长时间尺度的数值模拟才能获得。
The different trapping mechanisms of the CO,2, saline aquifers geological storage process were outlined and the storage capacity calculation methods of different CO,2, trapping mechanisms were summarized. Based on the investigation and analysis on CO,2, saline aquifer geological storage projects and numerical simulation, the application scope of the calculation method for different CO,2, trapping mechanisms in saline aquifers is analyzed. After comprehensive analysis, the volumetric method can be applied to the calculation of CO,2, structural trapping storage capacity of geological units of different scales in the geological evaluation stage. It represents the maximum storage potential of the evaluation unit. Based on the selection of reasonable engineering, economic and other parameters, volumetric method can be updated. Calculation of high potential level storage volumes. Based on the selection of reasonable engineering, economic and other parameters, it can calculate the higher-level storage capacity. The application scope of long-time scale storge capacity calculation, including the residual, solubility, and mineral trapping, is the actual storage capacity at a certain time or time period at the site level or perfusion level, which only be obtained by establishing a geological model based on a defined storage project or storage site and by numerical simulation over a long-time scale.
CO2地质封存咸水层CO2捕获机理封存量计算应用范围
CO2 geological storagesaline aquifersCO2 trapping mechanismstorage capacity calculationapplication scope
丁仲礼 段晓男 葛全胜, 等.2050年大气CO2浓度控制:各国排放权计算[J]. 中国科学(D辑:地球科学), 2009, 39(8): 1009-1027.
DING Z L, DUAN X N, GE Q S, et al. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries[J]. Science China, Series(D-Earth Science), 2009, 52(10): 1447-1469.
王铃. IEA发布《2022年全球二氧化碳排放》报告[J]. 石油炼制与化工, 2023, 54(6): 110.
WANG L. The IEA released its Global CO2 Emissions 2022 report[J]. Petroleum Processing and Petrochemicals, 2023, 54(6): 110.
Intergovernmental Panel on Climate Change (IPCC). Special report: Global warming of 1.5 ℃: IPCC special report on impacts of global warming of 1.5 ℃ above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge: Cambridge University Press, 2023.
邹才能, 薛华庆, 熊波 等. “碳中和”的内涵、创新与愿景[J]. 天然气工业, 2021, 41(8): 46-57.
ZOU C N, XUE H Q, XIONG B, et al. Connotation, innovation and vision of ”carbon neutral”[J]. Natural Gas Industry, 2021, 41(8): 46-57.
周守为, 朱军龙. 助力“碳达峰、碳中和”战略的路径探索[J]. 天然气工业, 2021, 41(12): 1-8.
ZHOU S W, ZHU J L. Exploration of ways to helping ”Carbon Peak and Neutrality” strategy[J]. Natural Gas Industry, 2021, 41(12): 1-8.
MA J F, LI L, WANG H F, et al. Carbon capture and storage: History and the road ahead[J]. Engineering, 2022, 14(7): 33-43.
ZHANG D X, SONG J. Mechanisms for geological carbon sequestration[J]. Procedia IUTAM(International Union of Theoretical and Applied Mechanics), 2014, 10(1): 319-327.
王紫剑, 唐玄, 荆铁亚, 等. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质, 2022, 36(5): 1414-1431.
WANG Z J, TANG X, JING T Y, et al. Site selection strategy for an annual million-ton scale CO2 geological storage in China[J]. Geoscience, 2022, 36(5): 1414-1431.
曹默雷, 陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报, 2022, 96(5): 1868-1882.
CAO M L, CHEN J P. The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica, 2022, 96(5): 1868-1882.
SHEN P P, LIAO X W, LIU Q J. Methodology for estimation of CO2 storage capacity in reservoirs[J]. Petroleum Exploration and Development, 2009, 36(2): 216-220.
SANGUINITO S, SINGH H, MYSHAKIN M, et al. Methodology for estimating the prospective CO2 storage resource of residual oil zones at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2022, 96(1): 103006.
BRADSHAW J, BACHU S, BONIJOLY D, et al. CO2 storage capacity estimation: Issues and development of standards[J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 62-68.
曾溅辉, 马勇, 林腊梅, 等. 油田水文地质学[M]. 青岛: 中国石油大学出版社, 2021.
BACHU S. Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change[J]. Energy Conversion and Management, 2000, 41(9): 953-970.
BACHU S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change[J]. Environmental Geology, 2003, 44(3): 277-289.
KOPP A, CLASS H, HELMIG R. Investigations on CO2 storage capacity in saline aquifers-Part 2: Estimation of storage capacity coefficients[J]. International Journal of Greenhouse Gas Control, 2009, 3(3): 277-287.
KIMBREL H, WILDENSCHILD D, HERRUBG L, et al. The effect of original and initial saturation on residual nonwetting phase capillary trapping efficiency[J]. International Journal of Greenhouse Gas Control, 2022, 120(1): 103758.
马瑾. 地质封存条件下超临界二氧化碳运移规律研究[D]. 北京: 清华大学, 2013.
CHANG Y B, COATS B K, NOLEN J S, et al. A compositional model for CO2 floods including CO2 solubility in water[J]. SPE Reservoir Engineering (Society of Petroleum Engineers), 1998, 1(2): 155-160.
GUO T, HU J W, MAO S D, et al. Evaluation of the pressure-volume-temperature (PVT) data of water from experiments and molecular simulations since 1990[J]. Physics of the Earth and Planetary Interiors, 2015, 245(1): 88-102.
ALI M, JHA N, PAL N, et al. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook[J]. Earth-Science Reviews, 2022, 225(1): 103895.
IGLAUER S. Optimum storage depths for structural CO2 trapping[J]. International Journal of Greenhouse Gas Control, 2018, 77(1): 82-87.
LUO A, LI Y M, CHEN X, et al. Review of CO2 sequestration mechanism in saline aquifers[J]. Natural Gas Industry B, 2022, 9(4): 383-393.
IGLAUER S, SALAMAH A, SARMADIVALEH M, et al. Contamination of silica surfaces: Impact on water-CO2-quartz and glass contact angle measurements[J]. International Journal of Greenhouse Gas Control, 2014, 22(1): 325-328.
OSHAISH A, HASSAN A, MAHMOUD M, et al. Evaluating the rock wettability using multi-frequency dielectric measurements: A review on the fundamental concept and experimental approach[J]. Journal of Petroleum Science and Engineering, 2023, 220(1): 111177.
ZHOU J, ZHANG J J, YANG J P, et al. Mechanisms for kerogen wettability transition from water-wet to CO2-wet: Implications for CO2 sequestration[J]. Chemical Engineering Journal, 2022, 428(1): 132020.
AKINFIEV N N, DIAMOND L W. Thermodynamic model of aqueous CO2-H2O-NaCl solutions from 22 to 100℃ and from 0.1 to 100 MPa[J]. Fluid Phase Equilibria, 2010, 295(1): 104-124.
BACHU S, ADAMS J J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management, 2003, 44(20): 3151-3175.
CELIA M, BACHU S, NORDBOTTEN J, et al. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations[J]. Water Resources Research, 2015, 51(9): 6846-6892.
赵宁宁, 许天福, 田海龙, 等. 初始矿物组分对CO2矿物储存影响的模拟研究[J]. 矿物岩石地球化学通报, 2016, 35(4): 674-680.
ZHAO N N, XU T F, TIAN H L, et al. Numerical simulation of the influence of the initial mineral components on mineral trapping of CO2[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 674-680.
GAUS I. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks[J]. International journal of greenhouse gas control, 2010, 4(1): 73-89.
LI N Y, FENG W T, YU J J, et al. Recent advances in geological storage: Trapping mechanisms, storage sites, projects, and application of machine learning[J]. Energy & Fuels, 2023, 37(14): 10087-10111.
SARAF S, BERA A. A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration[J]. Renewable and Sustainable Energy Reviews, 2021, 144(1): 110986.
BACHU S. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 40(1): 188-202.
JUANES R, SPITERI E J, ORR F M, et al. Impact of relative permeability hysteresis on geological CO2 storage[J]. Water Resources Research, 2006, 42(12): 1-13.
BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
KUMAR A, OZAH R, NOH M, et al. Reservoir simulation of CO2 storage in deep saline aquifers[J]. SPE Journal, 2005, 10(3): 336-348.
YOUSSEF A, TRAN L, MATTHAI S. Impact of the vertical resolution of corner-point grids on CO2 plume migration predictions for layered aquifers[J]. International Journal of Greenhouse Gas Control, 2021, 106(1): 103249.
SCHWARTZ B. The spatial-temporal influence of grouped variables on pressure plume behavior at a geologic carbon storage project[J]. International Journal of Greenhouse Gas Control, 2022, 114(1): 103599.
ZHANG G, LU P, JI X, et al. CO2 plume migration and fate at sleipner, norway: Calibration of numerical models, uncertainty analysis, and reactive transport modelling of CO2 trapping to 10 000 years[J]. Energy Procedia, 2017, 114(4): 2880-2895.
TALMAN S. Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer: What is known[J]. International Journal of Greenhouse Gas Control, 2015, 40(1): 267-291.
郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2(4): 36-46.
GUO J Q, WEN D G, ZHANG S Q, et al. Potential evaluation and demonstration project of CO2 geological storage in China[J]. Geological Survey of China, 2015, 2(4): 36-46.
THIBEAU S, SELDON L. The CO2 storage resource catalogue: Facilitating CCS adoption[J]. SSRN Electronic Journal, 2022, 1(1): 1-13.
刁玉杰, 刘廷, 魏宁, 等. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 2023, 50(3): 943-951.
DIAO Y J, LIU T, WEI N, et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 2023, 50(3): 943-951.
杨永智, 沈平平, 宋新民, 等. 盐水层温室气体地质埋存机理及潜力计算方法评价[J]. 吉林大学学报(地球科学版), 2009, 39(4): 744-748.
YANG Y Z, SHEN P P, SONG X M, et al. Greenhouse gas geo-sequestration mechanism and capacity evaluation in aquifer[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 744-748.
PARK J, LEE S, KIHM J, et al. Probabilistic evaluation of multi-fluid-phase carbon dioxide storage capacities of saline formations in the Pohang Basin, Korea using three-dimensional geologic modeling and grid-based Monte Carlo simulation[J]. International Journal of Greenhouse Gas Control, 2018, 79(1): 289-312.
WRIGHT R, MOURITS F, RODRIGUEZ L, et al. The first North American carbon storage atlas[J]. Energy Procedia, 2013, 37: 5280-5289.
DE S S, KREVOR S. A tool for first order estimates and optimisation of dynamic storage resource capacity in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2021, 106(1): 103258.
VISHAL V, VERMA Y, CHANDRA D, et al. A systematic capacity assessment and classification of geologic CO2 storage systems in India[J]. International Journal of Greenhouse Gas Control, 2021, 111(1): 103458.
POPOVA O H, SMALL M J, MCCOY S T, et al. Comparative analysis of carbon dioxide storage resource assessment methodologies[J]. Environmental Geosciences, 2012, 3(1): 105-124.
WARWICK P D, VERMA M K, ATTANASI E D, et al. A database and probabilistic assessment methodology for carbon dioxide-enhanced oil recovery and associated carbon dioxide retention in the United States[J]. Energy Procedia, 2017, 114(1): 7055-7059.
BLONDES M S, BRENNAN S T, MERRILL M D, et al. National assessment of geologic carbon dioxide storage resources-Methodology implementation[EB/OL]. (2013-05-10) [2023-11-05]. https://pubs.usgs.gov/of/2013/1055/https://pubs.usgs.gov/of/2013/1055/.
GOODMAN A, SANGUINITO S, LEVINE J S. Prospective CO2 saline resource estimation methodology: Refinement of existing US-DOE-NETL methods based on data availability[J]. International Journal of Greenhouse Gas Control, 2016, 54(1): 242-249.
GOODMAN A, HAKALA A, BROMHAL G, et al. U. S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965.
AKAI T, KURIYAMA T, KATO S, et al. Numerical modelling of long-term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset[J]. International Journal of Greenhouse Gas Control, 2021, 110(1): 103405.
BALASHOV V N, GUTHRIE G D, HAKALA, J A, et al. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics[J]. Applied Geochemistry, 2013, 30(2): 41-56.
XU T, APPS J A, PRUESS K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936.
XU T, APPS J A, PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology, 2005, 217(3/4): 295-318.
XU T, APPS J A, PRUESS K, et al. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation[J]. Chemical Geology, 2007, 242(3/4): 319-346.
KNAUSS K G, JOHNSON J W, STEEFEL C I. Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2[J]. Chemical Geology, 2005, 217: 339-350.
WHITE S P, ALLIS R G, MOORE J, et al. Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA[J]. Chemical Geology, 2005, 217: 387-405.
MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations[J]. International journal of greenhouse gas control, 2021, 4(4): 659-667.
LIU F, LU P, ZHU C, et al. Coupled reactive flow and transport modeling of CO2 sequestration in the Mt. Simon sandstone formation, Midwest USA[J]. International Journal of Greenhouse Gas Control, 2011, 5(2): 294-307.
XU T F, APPS J A, PRUESS K. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations[J]. Journal of Geophysical Research(Solid Earth), 2003, 108(2): 2071.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构