图1 不同储层状态下CO2物性
扫 描 看 全 文
引用本文
阅读全文PDF
通过分析咸水层CO2地质封存过程中不同捕获机理,探究不同CO2捕获机理下的封存量计算方法,在CO2咸水层地质封存工程或数值模拟调研分析的基础上,探讨咸水层CO2不同捕获机理封存量计算方法的应用范围。综合分析表明,容积法可应用于地质评价阶段的不同尺度地质单元的CO2构造捕获封存量计算,代表了评价单元的最大封存潜力,在选取合理的工程、经济等参数基础上,可进行更高潜力级别封存量的计算;长时间尺度的CO2束缚气捕获、溶解捕获、矿物捕获3种计算方法,应用范围为场地级或灌注级的某一时间点或时间段的实际封存量计算,只有依据封存工程或封存场地建立地质模型,并进行长时间尺度的数值模拟才能获得。
The different trapping mechanisms of the CO2 saline aquifers geological storage process were outlined and the storage capacity calculation methods of different CO2 trapping mechanisms were summarized. Based on the investigation and analysis on CO2 saline aquifer geological storage projects and numerical simulation, the application scope of the calculation method for different CO2 trapping mechanisms in saline aquifers is analyzed. After comprehensive analysis, the volumetric method can be applied to the calculation of CO2 structural trapping storage capacity of geological units of different scales in the geological evaluation stage. It represents the maximum storage potential of the evaluation unit. Based on the selection of reasonable engineering, economic and other parameters, volumetric method can be updated. Calculation of high potential level storage volumes. Based on the selection of reasonable engineering, economic and other parameters, it can calculate the higher-level storage capacity. The application scope of long-time scale storge capacity calculation, including the residual, solubility, and mineral trapping, is the actual storage capacity at a certain time or time period at the site level or perfusion level, which only be obtained by establishing a geological model based on a defined storage project or storage site and by numerical simulation over a long-time scale.
大量化石燃料的使用,使得CO2在大气中的含量急剧上升,其带来的温室效应已经成为科学界的共识[
CO2咸水层封存过程中,存在构造捕获、束缚气捕获、溶解捕获和矿化捕获等捕获机理[
根据地层水总矿化度(TDS)分类,TDS低于3 g/L的地下水认为可应用于饮用或工农业生产,而TDS高于50 g/L的地下水则视为矿产资源。因此,应用于CO2地质封存的咸水层的TDS应为3~50 g/L,通常,在地下孔隙空间中,该矿化度范围内的咸水层在沉积盆地中广泛发育[
咸水层封存通常要求CO2以超临界态封存于储层中,才能确保CO2封存的稳定性和安全性;超临界态要求CO2所封存的储层温度应大于31.1 ℃,压力大于7.38 MPa〔见
图1 不同储层状态下CO2物性
Fig. 1 Physical properties of CO2 in different reservoir states
注: 图(a)、(b)据文献[
通常情况下,温度越低、压力越高则超临界状态CO2密度越大,在超临界CO2相对气态或液态,CO2密度大大增加〔见
CO2溶解度随压力增大而增加,随温度增加而减小[
CO2在咸水层的捕获方式分为物理捕获和化学捕获,前者包括CO2构造捕获和束缚气捕获,后者包括溶解捕获和矿化捕获[
1)构造捕获。构造捕获是将液态或超临界CO2封存于非渗透性盖层之下。当CO2注入咸水层后,对咸水层施加了额外的压力;同时,在咸水层与CO2密度差的作用下,CO2以游离态远离井筒并向上运移,在储层与盖层的界面处,由于储层中CO2向上的浮力小于盖层的毛管吸入压力,在盖层之下实现封闭[
(1)
图2 CO2咸水层地质封存原理(据文献[
Fig. 2 CO2 sequestration mechanism in saline aquifers
构造捕获的浮力与CO2羽流的高度、孔隙空间内CO2与咸水层的密度差有关(通常为300~400 kg·m-3),可以表示为
(2)
通过公式(2)可以计算得出构造捕获中最大羽流的高度(h):
(3)
公式(3)表明,CO2羽流的最大高度与盖层的性质(孔隙半径、润湿性)、CO2密度有关[
2)束缚气捕获。束缚气捕获是CO2羽流末端因毛细管力而封存于孔隙中,或CO2以不连续相永久封存于孔隙空间中[
图3 实测CO2-水-石英接触角(据文献[
Fig. 3 Compilation of experimental CO2-water-silica contact angles
3)溶解捕获。溶解捕获指CO2溶解于咸水层中被捕获[
图4 不同温压下的CO2溶解度(据文献[
Fig. 4 Solubility of CO2 at different temperatures and pressures
CO2溶于水后,相比于未溶解CO2的地层水,密度会轻微增加约1%[
4)矿物捕获。当CO2在封存地层的过程中,通过各种化学反应与不同的有机物质和矿物质反应,形成新的稳定矿物,称为矿物封存[
释放出的金属阳离子进一步与HCO3-或CO42-生成新的矿物:
上述反应的反应顺序、反应类型、反应速率主要受pH值、水文地质、储层原始矿物特征及地层构造等因素影响[
图5 咸水层pH值与CO2捕获类型关系(据文献[
Fig. 5 Relationship between pH and CO2 trapping type in saline aquifer
构造捕获封存量计算主要通过容积法获得。容积法假定储层流体系统为开放系统,在CO2注入后,会驱替咸水层到其他地质单元,且不会导致储层内部流体压力明显增大。容积法计算的封存量主要与孔隙空间的体积有关,即主要反映了由构造捕获机理封存的CO2量。其主要计算方法有美国能源部法[
(4)
(5)
由于束缚气捕获大多发生于CO2停止注入后,实际封存CO2的量主要取决于地层流体通过吮吸作用重新占据孔隙空间后仍保留在储层孔隙中的CO2的量。因此,可以通过计算反向流动后孔隙空间内CO2占地层水中的体积分数( )来进一步求取束缚气的体积,
主要与CO2-地层水两相流的相对渗透率有关[
后,进一步结合储层状态下的温度、压力求取CO2的密度,进而计算封存量[
(6)
公式(6)中,φ可以通过实验测试或地球物理资料求取,而ΔVtrap则需要数值模拟方法求取[
由于溶解捕获过程要求CO2与未CO2饱和的咸水层充分接触,并发生持续的溶解作用,因此同样为一个连续的、相对缓慢的、并与时间高度相关的过程,通常认为是在数百年内。因此,评估溶解封存量同样通常限定于某一特定时间段或者多个时间段[
(7)
(8) 为CO2咸水层中溶解捕获的封存量,kg;ρs,ρi分别为CO2饱和地层流体及初始地层流体密度,kg/m3;
为CO2溶解于原始地层流体并达到CO2饱和状态时,CO2在地层水中的平均质量分数,%;
为CO2在未注入前时地层流体中的平均质量分数,%;C为溶解封存的有效系数。
值得注意的是,求取溶解捕获的理论封存量是无实际地质意义的,因为并非所有的地层水都可以与CO2羽流接触,因此必须乘以C,进而求取有效封存量。C代表了包括影响CO2扩散和溶解的所有因素的总和,因此,基于溶解捕获封存量的计算应是针对某一具体封存场地或封存工程[
矿物捕获过程包含了数千年尺度的复杂物理化学过程,如此长时间的物理化学参数获取难度极大,因此很难直接通过公式计算获得较大的盆地或区域尺度、准确的矿物捕获封存量。在通过数值模拟计算矿物捕获封存量时,应首先建立真实的储层模型。建立地质模型中,应考虑因素包括咸水层的水体性质及储层矿物特征[
前人基于不同评价单元、资料程度、经济-技术因素、社会-法规因素提出了不同的封存潜力分级方案[
图6 不同封存潜力分级及其对应关系
Fig. 6 Different storage potential classifications and their correspondence
上述分级方案主要应用于勘探阶段,主要反映了咸水层静态理论封存潜力及在不同地质因素、技术水平、经济因素限制下的封存量。因此,在不同级别的潜力计算时,应主要考虑可用于CO2封存的孔隙空间、CO2的相态及密度、合理的工程、经济系数取值、数据的可靠性等因素[
理论上讲,CO2总的封存潜力应是4类捕获机理埋存量之和[
(9)
图7 捕获机制转化过程(据文献[
Fig. 7 Trapping mechanism transformation process
在CO2灌注阶段,随着CO2不断注入,封存量持续增加,CO2在该阶段以游离态的构造封存占主导,表现为CO2受浮力控制向上运移至非渗透盖层。停止CO2注入后,储层流体压力开始平衡,该级段以束缚气捕获为主导,此时CO2受毛管力控制。流体压力平衡后,主要捕获机制为CO2-地层水界面处缓慢而持久的CO2扩散及溶解过程。与此同时,随着矿物的溶解,地层水离子类型的变化,矿物捕获开始。因此,咸水层CO2地质封存的过程中,构造捕获控制着束缚气捕获的范围,而束缚气捕获和构造捕获通过增大CO2与水的界面,控制了溶解捕获的范围,而矿物捕获的前提为溶解捕获。因此,构造捕获的封存量代表了评价单元的最大封存潜力。
容积法主要通过计算可用于CO2封存的地下孔隙空间,进一步结合CO2的密度求取封存量。在实际应用中,由于CO2和相态密度随着压力和温度变化,尤其是在区域资料较为缺乏的情况下,计算有效封存质量相对于有效封存体积更为困难[
(10) 为可用于CO2封存的有效体积,m3;
、
、
分别为最小、实际、最大封存量,kg。
美国地质调查局(USGS)、美国能源部等对北美咸水层CO2封存潜力评价过程中[
图8 封存评价单元剖面(据文献[
Fig. 8 Cross section through a storage assessment unit
长时间尺度封存量指CO2注入后,由束缚气捕获、溶解捕获、矿物捕获3种捕获机理的封存量。根据对Sleipner项目长时间尺度的数值模拟[
图9 Sleipner项目长时间尺度模拟CO2分布特征(据文献[
Fig. 9 Long-term scale simulation of CO2 distribution characteristics of the Sleipner project
Balashov等[
图10 砂岩储层注入超临界CO2后矿物随时间变化(据文献[
Fig. 10 Minerals changes over time after injection supercritical CO2 into sandstone aquifer
上述长尺度的CO2迁移过程表明,束缚气与溶解捕获计算公式中的ΔVtrap, ,XCO2s随捕获时间变化而变化,且很难直接获取,必须通过客观的地质模型进而通过长尺度的数值模拟获得。因此,长时间尺度的封存量计算只有在实验室数据及现场数据支撑下,场地级的矿物捕获封存量和一定时间点或一段时间内的数值模拟,才具有实际意义。
1)容积法可应用于地质评价阶段不同尺度地质单元的CO2构造捕获封存量计算,代表了评价单元的最大封存潜力,在选取合理的工程、经济等参数的基础上,可进行更高潜力级别封存量的计算。
2)长时间尺度的CO2束缚气捕获、溶解捕获、矿物捕获3种计算方法,应用范围为场地级或灌注级的某一时间点或时间段的实际封存量,只有依据封存工程或封存场地建立地质模型,并进行长时间尺度的数值模拟才能获得。
丁仲礼 段晓男 葛全胜, 等.2050年大气CO2浓度控制:各国排放权计算[J]. 中国科学(D辑:地球科学), 2009, 39(8): 1009-1027. [百度学术]
DING Z L, DUAN X N, GE Q S, et al. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries[J]. Science China, Series(D-Earth Science), 2009, 52(10): 1447-1469. [百度学术]
王铃. IEA发布《2022年全球二氧化碳排放》报告[J]. 石油炼制与化工, 2023, 54(6): 110. [百度学术]
WANG L. The IEA released its Global CO2 Emissions 2022 report[J]. Petroleum Processing and Petrochemicals, 2023, 54(6): 110. [百度学术]
Intergovernmental Panel on Climate Change (IPCC). Special report: Global warming of 1.5 ℃: IPCC special report on impacts of global warming of 1.5 ℃ above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge: Cambridge University Press, 2023. [百度学术]
邹才能, 薛华庆, 熊波 等. “碳中和”的内涵、创新与愿景[J]. 天然气工业, 2021, 41(8): 46-57. [百度学术]
ZOU C N, XUE H Q, XIONG B, et al. Connotation, innovation and vision of ”carbon neutral”[J]. Natural Gas Industry, 2021, 41(8): 46-57. [百度学术]
周守为, 朱军龙. 助力“碳达峰、碳中和”战略的路径探索[J]. 天然气工业, 2021, 41(12): 1-8. [百度学术]
ZHOU S W, ZHU J L. Exploration of ways to helping ”Carbon Peak and Neutrality” strategy[J]. Natural Gas Industry, 2021, 41(12): 1-8. [百度学术]
MA J F, LI L, WANG H F, et al. Carbon capture and storage: History and the road ahead[J]. Engineering, 2022, 14(7): 33-43. [百度学术]
ZHANG D X, SONG J. Mechanisms for geological carbon sequestration[J]. Procedia IUTAM(International Union of Theoretical and Applied Mechanics), 2014, 10(1): 319-327. [百度学术]
王紫剑, 唐玄, 荆铁亚, 等. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质, 2022, 36(5): 1414-1431. [百度学术]
WANG Z J, TANG X, JING T Y, et al. Site selection strategy for an annual million-ton scale CO2 geological storage in China[J]. Geoscience, 2022, 36(5): 1414-1431. [百度学术]
曹默雷, 陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报, 2022, 96(5): 1868-1882. [百度学术]
CAO M L, CHEN J P. The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica, 2022, 96(5): 1868-1882. [百度学术]
SHEN P P, LIAO X W, LIU Q J. Methodology for estimation of CO2 storage capacity in reservoirs[J]. Petroleum Exploration and Development, 2009, 36(2): 216-220. [百度学术]
SANGUINITO S, SINGH H, MYSHAKIN M, et al. Methodology for estimating the prospective CO2 storage resource of residual oil zones at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2022, 96(1): 103006. [百度学术]
BRADSHAW J, BACHU S, BONIJOLY D, et al. CO2 storage capacity estimation: Issues and development of standards[J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 62-68. [百度学术]
曾溅辉, 马勇, 林腊梅, 等. 油田水文地质学[M]. 青岛: 中国石油大学出版社, 2021. [百度学术]
BACHU S. Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change[J]. Energy Conversion and Management, 2000, 41(9): 953-970. [百度学术]
BACHU S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change[J]. Environmental Geology, 2003, 44(3): 277-289. [百度学术]
KOPP A, CLASS H, HELMIG R. Investigations on CO2 storage capacity in saline aquifers-Part 2: Estimation of storage capacity coefficients[J]. International Journal of Greenhouse Gas Control, 2009, 3(3): 277-287. [百度学术]
KIMBREL H, WILDENSCHILD D, HERRUBG L, et al. The effect of original and initial saturation on residual nonwetting phase capillary trapping efficiency[J]. International Journal of Greenhouse Gas Control, 2022, 120(1): 103758. [百度学术]
马瑾. 地质封存条件下超临界二氧化碳运移规律研究[D]. 北京: 清华大学, 2013. [百度学术]
CHANG Y B, COATS B K, NOLEN J S, et al. A compositional model for CO2 floods including CO2 solubility in water[J]. SPE Reservoir Engineering (Society of Petroleum Engineers), 1998, 1(2): 155-160. [百度学术]
GUO T, HU J W, MAO S D, et al. Evaluation of the pressure-volume-temperature (PVT) data of water from experiments and molecular simulations since 1990[J]. Physics of the Earth and Planetary Interiors, 2015, 245(1): 88-102. [百度学术]
ALI M, JHA N, PAL N, et al. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook[J]. Earth-Science Reviews, 2022, 225(1): 103895. [百度学术]
IGLAUER S. Optimum storage depths for structural CO2 trapping[J]. International Journal of Greenhouse Gas Control, 2018, 77(1): 82-87. [百度学术]
LUO A, LI Y M, CHEN X, et al. Review of CO2 sequestration mechanism in saline aquifers[J]. Natural Gas Industry B, 2022, 9(4): 383-393. [百度学术]
IGLAUER S, SALAMAH A, SARMADIVALEH M, et al. Contamination of silica surfaces: Impact on water-CO2-quartz and glass contact angle measurements[J]. International Journal of Greenhouse Gas Control, 2014, 22(1): 325-328. [百度学术]
OSHAISH A, HASSAN A, MAHMOUD M, et al. Evaluating the rock wettability using multi-frequency dielectric measurements: A review on the fundamental concept and experimental approach[J]. Journal of Petroleum Science and Engineering, 2023, 220(1): 111177. [百度学术]
ZHOU J, ZHANG J J, YANG J P, et al. Mechanisms for kerogen wettability transition from water-wet to CO2-wet: Implications for CO2 sequestration[J]. Chemical Engineering Journal, 2022, 428(1): 132020. [百度学术]
AKINFIEV N N, DIAMOND L W. Thermodynamic model of aqueous CO2-H2O-NaCl solutions from 22 to 100℃ and from 0.1 to 100 MPa[J]. Fluid Phase Equilibria, 2010, 295(1): 104-124. [百度学术]
BACHU S, ADAMS J J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management, 2003, 44(20): 3151-3175. [百度学术]
CELIA M, BACHU S, NORDBOTTEN J, et al. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations[J]. Water Resources Research, 2015, 51(9): 6846-6892. [百度学术]
赵宁宁, 许天福, 田海龙, 等. 初始矿物组分对CO2矿物储存影响的模拟研究[J]. 矿物岩石地球化学通报, 2016, 35(4): 674-680. [百度学术]
ZHAO N N, XU T F, TIAN H L, et al. Numerical simulation of the influence of the initial mineral components on mineral trapping of CO2[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 674-680. [百度学术]
GAUS I. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks[J]. International journal of greenhouse gas control, 2010, 4(1): 73-89. [百度学术]
LI N Y, FENG W T, YU J J, et al. Recent advances in geological storage: Trapping mechanisms, storage sites, projects, and application of machine learning[J]. Energy & Fuels, 2023, 37(14): 10087-10111. [百度学术]
SARAF S, BERA A. A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration[J]. Renewable and Sustainable Energy Reviews, 2021, 144(1): 110986. [百度学术]
BACHU S. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 40(1): 188-202. [百度学术]
JUANES R, SPITERI E J, ORR F M, et al. Impact of relative permeability hysteresis on geological CO2 storage[J]. Water Resources Research, 2006, 42(12): 1-13. [百度学术]
BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443. [百度学术]
KUMAR A, OZAH R, NOH M, et al. Reservoir simulation of CO2 storage in deep saline aquifers[J]. SPE Journal, 2005, 10(3): 336-348. [百度学术]
YOUSSEF A, TRAN L, MATTHAI S. Impact of the vertical resolution of corner-point grids on CO2 plume migration predictions for layered aquifers[J]. International Journal of Greenhouse Gas Control, 2021, 106(1): 103249. [百度学术]
SCHWARTZ B. The spatial-temporal influence of grouped variables on pressure plume behavior at a geologic carbon storage project[J]. International Journal of Greenhouse Gas Control, 2022, 114(1): 103599. [百度学术]
ZHANG G, LU P, JI X, et al. CO2 plume migration and fate at sleipner, norway: Calibration of numerical models, uncertainty analysis, and reactive transport modelling of CO2 trapping to 10 000 years[J]. Energy Procedia, 2017, 114(4): 2880-2895. [百度学术]
TALMAN S. Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer: What is known[J]. International Journal of Greenhouse Gas Control, 2015, 40(1): 267-291. [百度学术]
郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2(4): 36-46. [百度学术]
GUO J Q, WEN D G, ZHANG S Q, et al. Potential evaluation and demonstration project of CO2 geological storage in China[J]. Geological Survey of China, 2015, 2(4): 36-46. [百度学术]
THIBEAU S, SELDON L. The CO2 storage resource catalogue: Facilitating CCS adoption[J]. SSRN Electronic Journal, 2022, 1(1): 1-13. [百度学术]
刁玉杰, 刘廷, 魏宁, 等. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 2023, 50(3): 943-951. [百度学术]
DIAO Y J, LIU T, WEI N, et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 2023, 50(3): 943-951. [百度学术]
杨永智, 沈平平, 宋新民, 等. 盐水层温室气体地质埋存机理及潜力计算方法评价[J]. 吉林大学学报(地球科学版), 2009, 39(4): 744-748. [百度学术]
YANG Y Z, SHEN P P, SONG X M, et al. Greenhouse gas geo-sequestration mechanism and capacity evaluation in aquifer[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 744-748. [百度学术]
PARK J, LEE S, KIHM J, et al. Probabilistic evaluation of multi-fluid-phase carbon dioxide storage capacities of saline formations in the Pohang Basin, Korea using three-dimensional geologic modeling and grid-based Monte Carlo simulation[J]. International Journal of Greenhouse Gas Control, 2018, 79(1): 289-312. [百度学术]
WRIGHT R, MOURITS F, RODRIGUEZ L, et al. The first North American carbon storage atlas[J]. Energy Procedia, 2013, 37: 5280-5289. [百度学术]
DE S S, KREVOR S. A tool for first order estimates and optimisation of dynamic storage resource capacity in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2021, 106(1): 103258. [百度学术]
VISHAL V, VERMA Y, CHANDRA D, et al. A systematic capacity assessment and classification of geologic CO2 storage systems in India[J]. International Journal of Greenhouse Gas Control, 2021, 111(1): 103458. [百度学术]
POPOVA O H, SMALL M J, MCCOY S T, et al. Comparative analysis of carbon dioxide storage resource assessment methodologies[J]. Environmental Geosciences, 2012, 3(1): 105-124. [百度学术]
WARWICK P D, VERMA M K, ATTANASI E D, et al. A database and probabilistic assessment methodology for carbon dioxide-enhanced oil recovery and associated carbon dioxide retention in the United States[J]. Energy Procedia, 2017, 114(1): 7055-7059. [百度学术]
BLONDES M S, BRENNAN S T, MERRILL M D, et al. National assessment of geologic carbon dioxide storage resources-Methodology implementation[EB/OL]. (2013-05-10) [2023-11-05]. https://pubs.usgs.gov/of/2013/1055/. [百度学术]
GOODMAN A, SANGUINITO S, LEVINE J S. Prospective CO2 saline resource estimation methodology: Refinement of existing US-DOE-NETL methods based on data availability[J]. International Journal of Greenhouse Gas Control, 2016, 54(1): 242-249. [百度学术]
GOODMAN A, HAKALA A, BROMHAL G, et al. U. S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965. [百度学术]
AKAI T, KURIYAMA T, KATO S, et al. Numerical modelling of long-term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset[J]. International Journal of Greenhouse Gas Control, 2021, 110(1): 103405. [百度学术]
BALASHOV V N, GUTHRIE G D, HAKALA, J A, et al. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics[J]. Applied Geochemistry, 2013, 30(2): 41-56. [百度学术]
XU T, APPS J A, PRUESS K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936. [百度学术]
XU T, APPS J A, PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology, 2005, 217(3/4): 295-318. [百度学术]
XU T, APPS J A, PRUESS K, et al. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation[J]. Chemical Geology, 2007, 242(3/4): 319-346. [百度学术]
KNAUSS K G, JOHNSON J W, STEEFEL C I. Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2[J]. Chemical Geology, 2005, 217: 339-350. [百度学术]
WHITE S P, ALLIS R G, MOORE J, et al. Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA[J]. Chemical Geology, 2005, 217: 387-405. [百度学术]
MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations[J]. International journal of greenhouse gas control, 2021, 4(4): 659-667. [百度学术]
LIU F, LU P, ZHU C, et al. Coupled reactive flow and transport modeling of CO2 sequestration in the Mt. Simon sandstone formation, Midwest USA[J]. International Journal of Greenhouse Gas Control, 2011, 5(2): 294-307. [百度学术]
XU T F, APPS J A, PRUESS K. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations[J]. Journal of Geophysical Research(Solid Earth), 2003, 108(2): 2071. [百度学术]
0
浏览量
0
下载量
0
CSCD
相关文章
相关作者
相关机构