1.西北大学 地质学系/榆林碳中和学院/二氧化碳捕集与封存国家地方联合工程研究中心/陕西省碳中和技术重点实验室,陕西 西安 710069
2.延安大学 石油工程与环境工程学院,陕西 延安 716000
[ "张小莉,工学博士,西北大学地质学系教授,博士生导师。教育部地质类教学指导委员会委员,陕西省教学指导委员会委员,陕西省石油学会第八届理事会理事,陕西省石油学会非常规油气勘探与开发专业委员会委员,陕西省石油学会测井技术专业委员会委员,中国石油学会、地球物理学会会员;国家重点学科“矿产普查与勘探”、教育部创新团队“能源盆地油气地质”骨干成员,陕西省重点学科“地球探测与信息技术”的学科带头人;主持国家“863”课题及专题、国家科技重大专项课题及专题、国家科技支撑计划重大项目专题、企业重点科技攻关项目等多项;发表论文80余篇,授权国家发明专利5项,出版学术专著2部;“鄂尔多斯盆地中部延长组下组合找油突破的勘探关键技术”获国家科学技术进步奖二等奖(2003),2015年获陕西省科学技术奖1项,2018年获“科学中国人(2018)年度人物”荣誉称号。" ]
扫 描 看 全 文
张小莉, 李亚军, 冯淳, 等. 榆林—神木地区CO2咸水层封存甜点优选[J]. 西北大学学报(自然科学版), 2023,53(6):900-912.
ZHANG Xiaoli, LI Yajun, FENG Chun, et al. Sweet spot selection in CO2 saline aquifers geological storage, Yulin-Shenmu Area[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):900-912.
张小莉, 李亚军, 冯淳, 等. 榆林—神木地区CO2咸水层封存甜点优选[J]. 西北大学学报(自然科学版), 2023,53(6):900-912. DOI: 10.16152/j.cnki.xdxbzr.2023-06-003.
ZHANG Xiaoli, LI Yajun, FENG Chun, et al. Sweet spot selection in CO2 saline aquifers geological storage, Yulin-Shenmu Area[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):900-912. DOI: 10.16152/j.cnki.xdxbzr.2023-06-003.
融合区域重力、磁法、电法、遥感、地震资料和测井资料,分析地层构造特征及可能存在的断裂;对远离断层的区域,基于钻井、录井、测井资料综合分析,通过精细岩性识别、储层物性、盖层特征分析,厘清钻井中优质储层、盖层组合特征及展布;结合CO,2,可注入性实验模拟结果,形成CO,2,咸水层封存甜点优选技术序列,从而达到优选CO,2,咸水层封存潜力甜点的目的。研究表明,榆林和神木地区的纸坊组3段、神木及其附近的石千峰组千5段、榆林北部和西北部的延长组长10底部的砂体发育,物性较好,优质储层发育,储盖组合优,远离断层,砂体埋藏深度分别为750~1 500 m,1 500~2 100 m,850~1 350 m。研究后认为,纸3段、千5段优质储层发育区为CO,2,咸水层封存甜点分布有利潜力区,榆林北部和西北部的长10底部优质储层发育区为CO,2,咸水层封存甜点潜力接替区;和尚沟组、刘家沟组砂体相对不发育,主要为泥质地层,起到良好区域封盖作用。
Comprehensive analysis of the structural characteristics and the possible faults by integrating gravity, magnetic, electrical, and remote sensing data; for areas far away from faults, based on comprehensive analysis of drilling and logging data, fine lithology identification, reservoir physical properties and cap rock characteristics is used to clarify the characteristics of high quality reservoirs-cap rock combinations and spatial distribution; based on the simulation results of CO,2, injectability experiments, a sequence of optimization techniques about the site selection for the CO,2, geological storage of sweet spots is formed.Thus, the goal to optimize the site for CO,2, geological storage of sweet spots in the saline aquifers is achieved. Research shows, the third member of the Zhifang Formation, the 5th member of the Shiqianfeng Formation in the area of Shenmu and the Chang 10 Member of Yangchang Formation in the northern and northwestern regions of Yulin have well-developed sand bodies with good physical properties, excellent caprock and lateral shielding conditions, far away from the faults, with burial depth of 750~1 500 m, 1 500~2 100 m, and 850~1 350 m. Research suggests that the development area of high-quality reservoirs in the third member of the Zhifang Formation and the 5th member of the Shiqianfeng Formation are the favorable potential sweet spot distribution areas for the CO,2, geological storage in the saline aquifers, and the development area of high-quality reservoirs at the bottom of Chang10 in the northern and northwestern regions of Yulin is a potential replacement sweet spot distribution area for the CO,2, geological storage in the saline aquifers; in the study area, the sand bodies of the Heshanggou Formation and Liujiagou Formation are relatively underdeveloped and mainly composed of mud strata, which play a good sealing role.
咸水层二氧化碳地质封存测井储盖组合甜点选址
saline aquifersCO2 geological storagewell logreservoir-caprock assemblagesweet spotsite selection
李禾. 示范推进,中国“碳捕手”方兴未艾[N]. 科技日报, 2023-04-25(08).
赵改善. 二氧化碳地质封存地球物理监测:现状、挑战与未来发展[J]. 石油物探, 2023, 62(2): 194-211.
ZHAO G S. Geophysical monitoring for geological carbon sequestration: Present status, challenges, andfuture development [J]. Geophysical Prospecting for Petroleum, 2023, 62(2): 194-211.
莫航, 刘世奇, 桑树勋. 苏北—南黄海盆地工业固定排放源CO2地质封存源汇匹配研究[J]. 地质论评, 2023, 69(增刊1): 128-130.
MO H, LIU S Q, SANG S X. Matching of CO2 geological sequestration source and sink for industrial fixed emission source in Subei-Southern Yellow Sea Basin [J]. Journal of Geological Review, 2023, 69(S1): 128-130.
李士伦, 汤勇, 段胜才, 等. CO2地质封存源汇匹配及安全性评价进展[J]. 油气藏评价与开发, 2023, 13(3): 269-279.
LI S L, TANG Y, DUAN S C, et al. Progress in source-sink matching and safety evaluation of CO2 geological sequestration [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 269-279.
祁生文, 郑博文, 路伟, 等. 二氧化碳地质封存选址指标体系及适宜性评价研究[J]. 第四纪研究, 2023, 43(2): 523-550.
QI S W, ZHENG B W, LU W, et al.Investigation of indexes system and suitability evaluation for carbon dioxide geological storage site[J]. Quaternary Sciences, 2023, 43(2): 523-550.
可行, 陈建文, 龚建明, 等. 珠江口盆地二氧化碳地质封存条件及源汇匹配性分析[J]. 海洋地质与第四纪地质, 2023, 43(2): 55-65.
KE X, CHEN J W, GONG J M, et al. Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 55-65.
可行, 陈建文, 龚建明, 等. 东海陆架盆地CO2地质封存适宜性评价[J]. 海洋地质前沿, 2023, 39(7): 1-12.
KE X, CHEN J W, GONG J M, et al. Suitability evaluation of CO2 sequestration in the East China Sea Shelf Basin [J]. Marine Geology Frontiers, 2023, 39(7): 1-12.
刁玉杰, 刘廷, 魏宁, 等. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 2023, 50(3): 943-951.
DIAO Y J, LIU T, WEI N, et al. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers [J]. Geology in China, 2023, 50(3): 943-951.
韩宏伟, 张金功, 张建锋, 等. 济阳拗陷二氧化碳气藏地下相态特征研究[J]. 西北大学学报(自然科学版), 2010, 40(3): 493-496.
HAN H W, ZHANG J G, ZHANG J F, et al. A study on phase of CO2 pools underground, Jiyang depression [J]. Journal of Northwest University (Natural Science Edition), 2010, 40(3): 493-496.
孙玉景, 周立发, 焦尊生. 鄂尔多斯盆地奥陶系马家沟组CO2封存的地质条件研究[J]. 西北大学学报(自然科学版), 2018, 48(3): 404-412.
SUN Y J, ZHOU L F, JIAO Z S. The geological conditions study of CO2 sequestration of Ordovician Majiagou formation in Ordos Basin [J]. Journal of Northwest University (Natural Science Edition), 2018, 48(3): 404-412.
文冬光, 郭建强, 张森琦, 等. 中国二氧化碳地质储存研究进展[J]. 中国地质, 2014, 41(5): 1716-1723.
WEN D G, GUO J Q, ZHANG S Q, et al. The progress in the research on carbon dioxide geological storage in China[J]. Geology in China, 2014, 41(5): 1716-1723.
杨艳林. CO2地质储存中地质特征实现技术与应用[D]. 长春: 吉林大学, 2014.
田海龙. CO2-咸水-岩相互作用对盖层封闭性影响研究[D]. 长春: 吉林大学, 2014.
万玉玉. 鄂尔多斯盆地石千峰组咸水层CO2地质储存中CO2的迁移转化特征[D]. 长春: 吉林大学, 2012.
任相坤, 崔永君, 步学朋, 等. 鄂尔多斯盆地CO2地质封存潜力分析[J]. 中国能源, 2010, 32(1): 29-32.
REN X K, CUI Y J, BU X P, et al. Analysis on CO2 storage potentiality in Ordos Basin[J]. Energy China, 2010, 32(1): 29-32
张冰, 梁凯强, 王维波, 等. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气, 2019, 6(3): 15-20.
ZHANG B, LIANG K Q, WANG W B, et al. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(3): 15-20.
王永胜. CO2咸水层封存砂岩储层孔隙尺度变化规律及可注性研究:基于神华CCS示范工程[D]. 北京: 中国地质大学, 2021.
高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟:以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41(1): 269-277.
GAO Z H, ZHAO R R, CHENG J M. Sandstone aquifer CO2 numerical simulation considering salt precipitation feedback in storage: Taking Ordos Basin as an example [J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277.
靖晶. CO2储存过程多因素影响的数值模拟研究:以鄂尔多斯盆地石千峰组为例[D]. 北京: 中国地质大学, 2021.
吕鹏飞. CO2咸水层封存润湿性与非均质性孔隙-岩心尺度影响机理研究[D]. 大连: 大连理工大学, 2019.
ZHANG X L, FENG Q, WANG X Z, et al. Prediction of CO2 saturation by using well logging data, in the process of CO2-EOR and geological storage of CO2[J]. Energy Procedia, 2017, 114: 4552-4556.
FENG Q, ZHANG X L, WANG X Z, et al. Prediction of sandstone reservoir composition, porosity and their variations by using well logging data, in the process of CO2-EOR and geological storage of CO2 [J]. Energy Procedia, 2017, 114: 4545-4551.
李士祥, 邓秀芹, 庞锦莲, 等. 鄂尔多斯盆地中生界油气成藏与构造运动的关系[J]. 沉积学报, 2010, 28(4): 798-807.
LI S X, DENG X Q, PANG J L, et al. Relationship between petroleum accumulation of mesozoic and tectonic movement in Ordos Basin [J]. Acta Sedimentologica Sinica, 2010, 28(4): 798-807.
柏冠军, 吴汉宁, 赵希刚, 等. 重力资料识别鄂尔多斯盆地线性构造方法研究[J]. 地球物理学进展, 2007, 22(5): 1386-1392.
BO G J, WU H N, ZHAO X G, et al. Research on recognition of linear structures using gravity data in ordos basin [J]. Progrsess in Gophysics, 2007, 22(5): 1386-1392.
赵希刚, 吴汉宁, 柏冠军, 等. 重磁异常解释断裂构造的处理方法及图示技术[J]. 地球物理学进展, 2008, 23(2): 414-421.
ZHAO X G, WU H N, BO G J, et al. Magnetic and gravity data processing method and imaging techniques for faulted structure interpretation [J]. Progrsess in Gophysics, 2008, 23(2): 414-421.
王靖华, 吴汉宁, 赵希刚, 等. 利用重力资料识别鄂尔多斯盆地断裂构造[J]. 能源技术与管理, 2006(1): 14-17.
WANG J H, WU H N, ZHAO X G. Recognition of rift structures using gravity data in Ordos Basin[J]. Energy Technology and Management, 2006(1): 14-17.
赵希刚. 鄂尔多斯盆地不同沉积地层中的断裂构造特征识别[J]. 中国核科技报告, 2006(1): 191-199.
ZHAO X G. Signature recogniti on for rift structures of different sediment strata in Ordos Basin [J]. China Nuclear Science and Technology Report, 2006(1): 191-199.
赵希刚. 多源信息处理及其在线环构造识别和多种能源矿藏(床)找矿中的应用[D]. 西安: 西北大学, 2006.
康锐. 鄂尔多斯盆地延长组长9、长10油层组沉积体系研究[D]. 西安: 长安大学, 2007.
李玉宏, 李文厚, 张倩, 等. 鄂尔多斯盆地及周缘沉积相图册[M]. 北京: 地质出版社, 2019.
李维. 鄂尔多斯盆地安塞油田延长组长10油藏精细描述研究[D]. 西安: 西北大学, 2011.
高阳. 鄂尔多斯盆地CCS地质封存中CO2-咸水-地层岩反应研究[D]. 北京: 中国石油大学(北京), 2018.
吴克强, 赵志刚, 祝彦贺, 等. 鄂尔多斯盆地东北缘“双低”致密气藏差异成藏规律及勘探开发关键技术[J]. 中国海上油气, 2022, 34(4): 43-54.
WU K Q, ZHAO Z G, ZHU Y H, et al. Differential accumulation laws and key exploration and development technplogies of “double-low” tight gas reservoirs in the northeastern margin of the Ordos Basin [J]. China Offshore Oil and Gas (Geology), 2022, 34(4): 43-54.
兰朝利, 张君峰, 陶维祥, 等. 神木气田石千峰组储层沉积微相与成岩作用[J]. 西安石油大学学报(自然科学版), 2011, 26(1): 28-33.
LAN C L, ZHANG J F, TAO W X, et al. Sedimentary microfacies and diagenesis of Shiqianfeng Formation reservoir in Shenmu Gas Field [J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2011, 26(1): 28-33.
李明瑞, 窦伟坦, 蔺宏斌, 等. 鄂尔多斯盆地东部上古生界致密岩性气藏成藏模式[J]. 石油勘探与开发, 2009, 36(1): 56-61.
LI M R, DOU W T, LIN H B, et al. Model for tight lithologic gas accumulation in Upper Palaeozoic, east of Ordos Basin [J]. Petroleum Exploration and Development, 2009, 36(1): 56-61.
刘娜娜, 刘立, 明晓冉, 等. 鄂尔多斯盆地伊金霍洛旗附近二叠系石千峰组岩石学、地球化学特征及其固碳能力分析[J]. 岩石矿物学杂志, 2014, 33(2): 255-262.
LIU N N, LIU L, MING X R, et al. Petrologic and geochemical characteristics and carbon sequestration capability of the Permian Shiqianfeng Formation around Ejinhoro Banner of Ordos Basin[J]. Acta Petrologicaet Mineralogica, 2014, 33(2): 255-262.
李仲东, 郝蜀民, 李良, 等. 鄂尔多斯盆地上古生界压力封存箱与天然气的富集规律[J]. 石油与天然气地质, 2007, 28(4): 466-472.
LI Z D, HAO S M, LI L, et al. Compartments in the Upper Paleozoic of northern Ordos Basin and their relationship with gas enrichment [J]. Oil and Gas Geology, 2007, 28(4): 466-472.
李明瑞, 窦伟坦, 蔺宏斌, 等. 鄂尔多斯盆地神木地区上古生界盖层物性封闭能力与石千峰组有利区域预测[J]. 中国石油勘探, 2006, 11(5): 21-25.
LI M R, DOU W T, LIN H B, et al. Evaluation on sealing ability of Upper Paleozoic caprocks physical property and favorable targets prediction of Shiqianfeng Formation in Shenmu Region, Ordos Basin [J]. China Petroleum Exploration, 2006, 11(5): 21-25.
张清, 孙六一, 黄道军, 等. 鄂尔多斯盆地东部石千峰组浅层气成藏机制[J]. 天然气工业, 2005, 25(4): 12-13.
ZHANG Q, SUN L Y, HUANG D J, et al. Reservoiringmechanis m of Shiqianfeng Formations hallow gas in easter Ordos basin [J]. Natural Gas Industry, 2005, 25(4): 12-13.
马鑫, 杨国栋, 喻英, 等. 黏土矿物含量对CO2地质埋存体盖层封闭性的影响[J]. 矿物岩石地球化学通报, 2019, 38(1): 121-129.
MA X, YANG G D, YU Y, et al. Status and advances of research on caprock sealing properties of CO2 geological storage [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(1): 121-129.
王永胜. CO2咸水层封存砂岩储层孔隙尺度变化规律及可注性研究[D]. 北京: 中国地质大学, 2021.
高阳. 鄂尔多斯盆地CCS地质封存中CO2-咸水-地层岩反应研究[D]. 北京: 中国石油大学(北京), 2018.
王永胜. CO2咸水层封存砂岩储层孔隙尺度变化规律及可注性研究[D]. 北京: 中国地质大学, 2021.
刘小天. CO2水岩反应对砂岩储层矿化封存机制的影响[D]. 北京: 中国地质大学(北京), 2018.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构