图1 沉积颗粒排列模式以及下半球投影图中AMS主轴分布示意图(据文献[
纸质出版日期:2023-08-25,
收稿日期:2023-02-27
扫 描 看 全 文
引用本文
以滇东地区朱家箐剖面和古莲村剖面为例,对滇东地区寒武系第二阶石岩头组、第三阶玉案山组和红井哨组共计42个采点(319个样品)开展了岩石磁学和磁化率各向异性研究。结果表明,样品中载磁矿物包括磁铁矿、赤铁矿以及少量的针铁矿,而AMS主要由顺磁性矿物携带;两个剖面样品的磁面理均较为发育,各向异性度较低,表现出典型的沉积特征,但结合地层走向与椭球体主轴的分布情况,认为朱家箐剖面反映了后期近E—W向挤压应力作用造成的初始变形组构,古莲村剖面的样品则保留了原生的叠瓦状沉积组构,包括流动组构和横向组构。对古莲村剖面样品的形状因子q和叠瓦角β的进一步分析发现,自玉案山组到红井哨组沉积的数百万年间,水动力条件逐渐增强,古水流方向没有显著变化,均为SW—NE向,其物源应该来自于西侧的康滇古陆。
In this paper, a total of 42 sites from the Early Cambrian Shiyantou Formation, Yulingshan Formation and Hongjingshao Formation were collected in Zhujiaqing section and Guliancun section for the study of rock magnetism and anisotropy of magnetic susceptibility. The experimental results show that the magnetic minerals in the samples include magnetite, hematite and a small amount of goethite, while paramagneticminerals are the main contributors to the AMS. In both sections, the magnetic foliation is relatively developed and the degree of anisotropy is low, showing typical sedimentary characteristics. However, considered the relationship between bedding strike and the distribution of AMS ellipsoid principal axis, the AMS results of Zhujiaqing section reflect the initial deformation fabrics under the late compressive stress near E-W direction, while the AMS results of Guliancun section retain the primary imbricated sedimentary fabrics, including flow fabrics and transverse fabrics. Through further analysis of shape factor (q) and imbricated angle (β) of samples in Guliancun section, it is found that during several million years of deposition from Yuanshan to Hongjingshao Formation, the hydrodynamic conditions gradually increased, and the paleocurrentic direction was SW-NE without significant change, and the sedimentary source area may be the Kangdian old land to the west.
碎屑岩的磁化率各向异性(AMS)形成于成岩作用的早期,很大程度上取决于沉积颗粒的物理性质和水动力条件,如颗粒大小和形状,水流的类型及其速度,以及沉积表面的形态和坡度等[
图1 沉积颗粒排列模式以及下半球投影图中AMS主轴分布示意图(据文献[
Fig. 1 Models of sedimentary grain alignment and the directions of AMS principal axis in lower hemisphere projection
注: (a)~(c)是重力和(或)水流作用下的原生沉积组构;(d)~(f)由不同程度水平挤压应力产生的次生变形组构。
当沉积岩在同沉积阶段或沉积以后受到区域构造应力的作用,沉积组构便可能被改造为次生的变形组构〔见
沉积岩古水流方向的确定可以帮助分析沉积物物源与古地貌特征。其中,物源分析对沉积盆地的大地构造背景判别、古环境恢复等均具有重要意义[
滇东地区位于扬子克拉通的西南缘〔见
图2 滇东地区大地构造简图(据文献[
Fig. 2 Structural schematic diagram in eastern Yunnan
滇东地区,寒武系第一阶到第四阶(幸运阶到都匀阶)地层自下而上划分为6个组:朱家箐组、石岩头组、玉案山组、红井哨组、乌龙箐组以及山邑村组[
图4 野外露头照片以及采样剖面地层柱状图
Fig. 4 Stratigraphic column and field outcrop photos in Zhujiaqing and Guliancun section
据地层风化程度和植被覆盖情况,在朱家箐剖面和古莲村剖面分别采集15个采点(94块钻样)和27个采点(225块钻样),每个采点至少采集6块样品。由于页岩段岩层破碎,取样难度较大,多数样品为细砂岩和粉砂岩。粉砂岩及页岩样品基本采集自玉案山组,细砂岩样品则多来自于石岩头组和红井哨组。采样工具为手持水冷式汽油钻机,采样过程中使用磁罗盘和太阳罗盘定向。全部样品在实验前被加工为2.54 cm×2.2 cm的圆柱形标准古地磁样品。
岩石磁学实验用于分析样品中载磁矿物的类型和相对含量等信息,从而确定磁化率各向异性的主要贡献者。本研究主要开展的岩石磁学实验包括磁滞回线、磁化率随温度变化曲线、等温剩磁(IRM)获得、反场退磁曲线以及三轴等温热退磁曲线实验。磁滞回线在中国科学院地球环境研究所测量,其他实验在西北大学大陆动力学国家重点实验室完成。数据处理软件包括HystLab程序[
,
磁滞回线的形状、闭合区间等特征反映了磁性矿物的类型、粒径以及磁畴等信息[
磁化率随温度变化曲线记录了矿物在加热和冷却过程中的转化特征,根据曲线的变化趋势,可以识别磁性矿物的种类、粒径,以加热过程中的矿物相的转变[
等温剩磁(IRM)获得及反场退磁曲线是样品中所有磁性矿物共同作用的结果,根据不同外场下IRM的饱和状态可以判断样品中主要的磁性矿物类型[
三轴等温剩磁热退磁曲线依据磁性矿物矫顽力和解阻温度的差异判断其类型[
AMS的测量仪器为MFK2型卡帕桥,交变场为200 A/m,频率为976 Hz。AMS由对称的二阶张量表示,该张量可以转化为一个磁化率椭球体。椭球体的3个主轴平行于张量的特征向量,分别称为最大轴(K1)、中间轴(K2)和最小轴(K3)。测试结果可以用3个主轴的方向、大小,以及它们的组合来表示[
采点 | 岩性 | N/n | km×10-6 | L | F | Pj | T | K1/(°) | K2/(°) | K3/(°) | q | β/(°) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
朱家箐剖面 | ||||||||||||
Z01 | 细砂岩 | 6/6 | 94.1 | 1.003 | 1.012 | 1.016 | 0.597 | 332.3/4.4 | 242.0/3.5 | 113.5/84.4 | ||
Z02 | 细砂岩 | 9/9 | 151.7 | 1.005 | 1.011 | 1.016 | 0.284 | 329.8/5.3 | 239.6/2.0 | 128.9/84.3 | ||
Z03 | 细砂岩 | 6/5 | 132.0 | 1.003 | 1.014 | 1.019 | 0.523 | 9.8/7.0 | 277.4/19.0 | 119.2/69.7 | ||
Z04 | 细砂岩 | 6/5 | 148.2 | 1.004 | 1.008 | 1.013 | 0.209 | 334.4/8.9 | 243.4/6.4 | 118.1/79.0 | ||
Z05 | 细砂岩 | 6/5 | 123.1 | 1.003 | 1.011 | 1.015 | 0.495 | 340.5/5.2 | 250.5/0.5 | 155.4/84.8 | ||
Z06 | 细砂岩 | 6/5 | 131.2 | 1.005 | 1.017 | 1.023 | 0.424 | 357.6/9.3 | 265.4/13.3 | 121.5/73.7 | ||
Z07* | 细砂岩 | 6/4 | ||||||||||
Z08 | 粉砂质页岩 | 6/6 | 170.0 | 1.005 | 1.028 | 1.035 | 0.718 | 191.1/5.0 | 100.7/4.0 | 332.6/83.6 | ||
Z09 | 细砂岩 | 6/5 | 42.4 | 1.006 | 1.020 | 1.028 | 0.531 | 344.6/5.9 | 254.5/1.1 | 153.7/84.0 | ||
Z10* | 细砂岩 | 6/4 | ||||||||||
Z11* | 细砂岩 | 6/1 | ||||||||||
Z12 | 细砂岩 | 7/5 | 53.7 | 1.004 | 1.007 | 1.012 | 0.251 | 346.7/1.6 | 76.7/1.7 | 212.4/87.7 | ||
Z13 | 细砂岩 | 6/5 | 52.9 | 1.005 | 1.008 | 1.013 | 0.265 | 347.8/7.0 | 78.0/1.8 | 182.4/82.7 | ||
Z14 | 细砂岩 | 6/5 | 63.5 | 1.004 | 1.009 | 1.014 | 0.385 | 352.2/2.7 | 262.0/4.5 | 113.6/84.7 | ||
Z15 | 细砂岩 | 6/5 | 57.2 | 1.003 | 1.011 | 1.015 | 0.569 | 0.6/3.5 | 270.3/4.7 | 127.1/84.2 | ||
合计 | 94/75 | |||||||||||
采点 | 岩性 | N/n | km /×10-6 | L | F | Pj | T | K1 /(°) | K2/(°) | K3/(°) | q | β/(°) |
古莲村剖面 | ||||||||||||
G01* | 细砂岩 | 9/2 | ||||||||||
G02 | 细砂岩 | 8/6 | 35.0 | 1.007 | 1.013 | 1.020 | 0.308 | 163.2/11.4 | 255.0/8.8 | 22.1/75.5 | 0.426 | 14.5 |
G03 | 细砂岩 | 11/6 | 36.5 | 1.006 | 1.012 | 1.019 | 0.330 | 218.7/14.4 | 310.8/8.0 | 69.1/73.4 | 0.414 | 16.6 |
G04 | 细砂岩 | 7/6 | 36.8 | 1.004 | 1.011 | 1.016 | 0.420 | 212.9/14.7 | 122.9/0.1 | 32.5/75.3 | 0.350 | 14.7 |
G05 | 细砂岩 | 7/7 | 70.5 | 1.002 | 1.009 | 1.013 | 0.589 | 355.7/0.6 | 265.6/11.2 | 88.6/78.8 | 0.242 | 11.2 |
G06 | 细砂岩 | 10/5 | 63.5 | 1.003 | 1.007 | 1.010 | 0.400 | 205.9/11.0 | 296.3/1.9 | 35.8/78.9 | 0.365 | 11.1 |
G07 | 细砂岩 | 9/7 | 67.7 | 1.003 | 1.008 | 1.012 | 0.483 | 347.2/1.9 | 256.7/14.0 | 84.6/75.8 | 0.307 | 14.2 |
G08 | 细砂岩 | 11/8 | 65.5 | 1.002 | 1.011 | 1.014 | 0.629 | 23.6/1.1 | 293.4/13.1 | 118.2/76.8 | 0.209 | 13.2 |
G09 | 细砂岩 | 13/8 | 63.8 | 1.004 | 1.009 | 1.013 | 0.383 | 165.4/9.8 | 74.3/6.1 | 312.9/78.4 | 0.373 | 11.6 |
G10 | 细砂岩 | 11/8 | 71.7 | 1.004 | 1.011 | 1.015 | 0.470 | 169.3/8.2 | 260.8/10.6 | 42.2/76.5 | 0.324 | 13.5 |
G11 | 细砂岩 | 9/9 | 92.1 | 1.005 | 1.010 | 1.016 | 0.299 | 158.9/7.7 | 249.3/3.0 | 0.4/81.7 | 0.433 | 8.3 |
G12 | 细砂岩 | 9/9 | 92.4 | 1.005 | 1.011 | 1.016 | 0.396 | 338.3/2.7 | 248.0/6.0 | 92.5/83.4 | 0.371 | 6.6 |
G13 | 细砂岩 | 8/5 | 74.6 | 1.004 | 1.009 | 1.013 | 0.442 | 133.0/5.4 | 223.3/2.7 | 339.6/84.0 | 0.336 | 6.0 |
G14 | 粉砂岩 | 11/6 | 76.5 | 1.004 | 1.008 | 1.012 | 0.452 | 143.9/5.6 | 235.7/17.6 | 36.8/71.5 | 0.338 | 18.5 |
G15 | 粉砂岩 | 9/8 | 95.5 | 1.003 | 1.009 | 1.012 | 0.541 | 176.9/9.4 | 268.4/9.1 | 41.5/76.9 | 0.266 | 13.1 |
G16 | 粉砂岩 | 6/5 | 78.6 | 1.002 | 1.010 | 1.013 | 0.666 | 344.2/2.1 | 253.8/2.1 | 86.1/80.0 | 0.185 | 10. 0 |
G17 | 粉砂岩 | 8/7 | 94.2 | 1.002 | 1.008 | 1.011 | 0.559 | 194.7/9.9 | 285.3/3.5 | 34.6/79.4 | 0.257 | 10.6 |
G18* | 粉砂岩 | 6/3 | ||||||||||
G19 | 粉砂质页岩 | 7/7 | 194.9 | 1.003 | 1.015 | 1.019 | 0.653 | 36.3/6.3 | 306.1/1.6 | 201.7/83.5 | 0.193 | 6.5 |
G20 | 粉砂质页岩 | 8/8 | 196.0 | 1.003 | 1.018 | 1.023 | 0.666 | 209.1/4.8 | 299.3/2.3 | 54.7/84.7 | 0.187 | 5.3 |
G21 | 粉砂质页岩 | 6/6 | 176.4 | 1.003 | 1.016 | 1.020 | 0.732 | 214.4/5.7 | 124./0.1 | 33.6/84.3 | 0.147 | 5.7 |
G22 | 粉砂岩 | 9/9 | 197.5 | 1.004 | 1.025 | 1.031 | 0.663 | 221.9/9.5 | 312.4/2.7 | 58.2/80.2 | 0.191 | 9.8 |
G23 | 粉砂质页岩 | 6/5 | 167.1 | 1.003 | 1.017 | 1.022 | 0.716 | 219.2/7.8 | 129.0/1.3 | 29.5/82.1 | 0.159 | 7.9 |
G24 | 粉砂岩 | 8/8 | 97.4 | 1.003 | 1.010 | 1.013 | 0.540 | 215.5/16.0 | 306.2/2.5 | 44.9/73.8 | 0.262 | 16.2 |
G25* | 粉砂岩 | 4/4 | ||||||||||
G26 | 粉砂岩 | 8/7 | 141.1 | 1.004 | 1.009 | 1.014 | 0.385 | 251.1/10.1 | 341.5/2.2 | 83.4/79.7 | 0.377 | 10.3 |
G27 | 粉砂质页岩 | 7/7 | 218.3 | 1.003 | 1.022 | 1.028 | 0.742 | 239.6/3.0 | 149.6/0.8 | 45.3/86.9 | 0.139 | 3.1 |
合计 | 225/176 |
注: N/n为进行AMS测试的样品/满足统计显著性水平并进行采点统计的样品;km为平均体积磁化率;磁线理L=K1/K2;磁面理F=K2/K3;校正后的各向异性度Pj=exp√{2[(η1ηm)2+(η2ηm)2+(η3ηm)2]},形状参数T=(2η2η1η3)/(η1η3),其中η1=ln K1,η2=ln K2,η3=ln K3,ηm=(η1+η2+η3)/3;形状因子q=(K1K2)/[(K1+K2)/2-K3],叠瓦角β=90-K3-Inc;标*的采点由于满足统计意义的样品量过少(<4)而被排除在采点统计之外。
AMS测试表明,所有样品的体积磁化率均位于30~300 μSI,采点平均体积磁化率在35.0~218.3 μSI(见
代表性样品的磁滞回线如
图5 朱家箐剖面(a~c)和古莲村剖面(d~f)样品磁滞回线
Fig. 5 The hysteresis loops of representative samples in Zhujiaqing (a~c) and Guliancun (d~f) section
k-t曲线显示(见
图6 朱家箐剖面(a~c)和古莲村剖面(d~f)样品磁化率随温度变化曲线
Fig. 6 Temperature-dependent susceptibility curves of representative samples in Zhujiaqing (a~c) and Guliancun (d~f) section
IRM曲线显示,样品Z0603和Z1301〔见
图7 朱家箐剖面(a~b)和古莲村剖面(c~d)样品IRM曲线、IRM分解曲线以及三轴IRM热退磁曲线
Fig. 7 IRM curves, IRM unmixing and thermal demagnetization of three-axis IRM of representative samples in Zhujiaqing (a~b) and Guliancun (c~d) section
对于样品G0102和G1608〔见
综上所述,体积磁化率测量、磁滞回线以及磁化率随温度变化曲线的测试结果均表明,样品中含有大量的顺磁性矿物,对磁化率具有重要贡献。样品中的(广义)强磁性矿物包括磁铁矿(磁赤铁矿)、赤铁矿以及少量针铁矿,但对磁化率的贡献较小。
对朱家箐剖面的94块样品和古莲村剖面的225块样品进行了AMS测试。绝大多数样品的AMS椭球体为扁圆型(T>0),说明磁面理普遍发育;校正后的各向异性度基本小于1.05,与未变形的碎屑岩特征一致〔见
为筛选出具有统计意义磁面理的样品,对单个样品的统计参数F23和误差半角E13、E23进行分析。E13、E23与磁面理呈反比关系,当磁面理较弱时,部分样品的K3轴的不确定性范围增大〔见
将F23<4和E23>22.5°的样品排除后〔见
图9 朱家箐剖面地层校正后各采点AMS主轴的下半球赤平投影图
Fig. 9 Lower hemisphere projections of AMS fabricafter tilt correction in Zhujiaqing Section
注: Z01-Z07为红井哨组,Z08为玉案山组,Z09-Z15为石岩头组
图10 古莲村剖面地层校正后各采点AMS主轴的下半球赤平投影图
Fig. 10 Lower hemisphere projections of AMS fabric after tilt correction in Guliancun Section
注: G01-G15为红井哨组,G16-G27为玉案山组
虽然两个剖面的AMS参数没有显著差异,但结合主轴分布特征与及其与地层走向的关系,认为朱家箐剖面的样品在沉积后受到了轻微的构造应力作用,导致矿物颗粒发生了重新定向,整体反应了初始变形组构,而古莲村剖面的样品基本保留了原生的沉积组构。
由于朱家箐剖面未能保留原生的沉积组构,后期的构造变形很可能掩盖了有关古水流方向和沉积过程的信息,因此仅讨论古莲村剖面的数据。在古莲村剖面,所有采点均呈明显的叠瓦状结构,根据K1轴和K3轴的对应关系,将其划分为流动组构和横向组构。岩石磁学结果表明,样品在室温下主要表现为顺磁性特征,因此,古莲村剖面的样品AMS数据主要反映了样品中顺磁性矿物的排列特征和首选方向,并可以用于沉积过程的分析[
Taira[
q-β图解(见
图12 采点水平下AMS主轴分布图以及K3和K1轴倾向的玫瑰花图
Fig. 12 Site-mean AMS fabrics and rose diagrams of K3 and K1
岩相古地理图表明,滇东地区在寒武纪早期处于西高东低的古地理格局,这一时期康滇古陆的剥蚀强度加大,向近海提供大量物源,出现大面积碎屑岩浅海沉积环境[
1) 朱家箐剖面的载磁矿物以磁铁矿为主,同时含有少量的赤铁矿。古莲村剖面样品的载磁矿物除磁铁矿外,还含有赤铁矿以及少量的针铁矿。
2) 朱家箐剖面受到了轻微的后期构造影响,AMS主要为初始变形组构。古莲村剖面保留了原生的沉积组构,根据主轴的分布特征,可以识别出流动叠瓦组构和横向叠瓦组构。横向组构仅出现在红井哨组,表明相对较强的水动力环境。q-β图解所推断的沉积过程与沉积相的结果基本一致,进一步表明古莲村剖面AMS的原生性。尽管缺少剖面上指向沉积构造的佐证,但无法否认q-β图解在区分沉积过程方面的潜力。
3) 当叠瓦状横向组构存在时,K1轴不再平行于古水流方向,而K3轴是良好的替代指标。自玉案山组到红井哨组沉积的数百万年间,研究区古水流方向没有发生明显的变化,均为SE—NE向,这一结果与区域上沉积学和地球化学研究的结果相一致。
HROUDA F. Magnetic anisotropy of rocks and its application in geology and geophysics[J]. Geophysical Surveys, 1982, 5(1), 37-82. [百度学术]
TAIRA A. Magnetic fabrics and depositional processes[M]. Tokyo: Terra Scientific Publishing Company, 1989. [百度学术]
TARLING D, HROUDA F. Magnetic anisotropy of rocks[M]. London: Chapman and Hall, 1993. [百度学术]
BAAS J H, HAILWOOD E A, MCCAFFREY W D, et al. Directional petrologicalcharacterisation of deep-marine sandstones using grain fabric and permeability anisotropy: Methodologies, theory, application and suggestions for integration[J]. Earth-Science Reviews, 2007, 82(1/2): 101-142. [百度学术]
STACHOWSKA A, ŁOZI<inline-formula><alternatives><graphic specific-use="print" xlink:href="media/1000-274X-53-04-016-I001.jpg"/><graphic specific-use="big" xlink:href="alternativeImage/1000-274X-53-04-016-I001.jpg"/><graphic specific-use="small" xlink:href="alternativeImage/1000-274X-53-04-016-I001c.jpg"/></alternatives></inline-formula>SKI M, SMIGIELSKI M, et al. Anisotropy of magnetic susceptibility as an indicator for palaeocurrent analysis in folded turbidites (Outer Western Carpathians, Poland)[J]. Sedimentology, 2020, 67(7): 3783-3808. [百度学术]
NOVAK B, HOUSEN B, KITAMURA Y, et al. Magnetic fabric analyses as a method for determining sediment transport and deposition in deep sea sediments[J]. Marine Geology, 2014, 356:19-30. [百度学术]
VERESTEK V, APPEL E, VOIGT S, et al. Constrained magnetostratigraphic dating of a continental Middle Miocene section in the arid central Asia[J]. Frontiers in Earth Science, 2018, 6(49):1-19. [百度学术]
TAMAKI M, SUZUKI K, FUJII T. Paleocurrent analysis of Pleistocene turbidite sediments in the forearc basin inferred from anisotropy of magnetic susceptibility and paleomagnetic data at the gas hydrate production test site in the eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66:404-417. [百度学术]
PARK M E, CHO H, SON M, et al. Depositional processes, paleoflow patterns, and evolution of a Miocene gravelly fan-delta system in SE Korea constrained by anisotropy of magnetic susceptibility analysis of interbedded mudrocks[J]. Marine and Petroleum Geology, 2013, 48:206-223. [百度学术]
SINGSOUPHO S, BHONGSUWAN T, ELMING S Å. Palaeocurrent direction estimated in Mesozoic redbeds of the Khorat Plateau, Lao PDR, Indochina Block using anisotropy of magnetic susceptibility[J]. Journal of Asian Earth Sciences, 2015, 106: 1-18. [百度学术]
BILARDELLO D. Late Paleozoic depositional environments and sediment transport directions of the itararégroup rocks from the state of São Paulo, Brazil, determined from rock magnetism and magnetic anisotropy[J]. Earth and Space Science, 2021, 8(7):e2021EA001703. [百度学术]
HROUDA F, CHADIMA M. Examples of tectonic overprints of magnetic fabrics in rocks of the Bohemian Massif and Western Carpathians[J]. International Journal of Earth Sciences, 2020, 109:1321-1336. [百度学术]
刘晨光, 孙知明, 李海兵, 等. 藏东昌都地区侏罗纪岩石磁组构研究及其构造意义[J]. 地质学报, 2019, 93(10): 2477-2485. [百度学术]
LIU C G, SUN Z M, LI H B, et al. Anisotropy of magnetic susceptibility study of the Jurassic rocks in the Qamdo Area, eastern Tibet, and its tectonic implications[J]. Acta Geologica Sinica, 2019, 93(10), 2477-2485. [百度学术]
刘建清, 何利, 何平, 等. 康滇古陆东缘筇竹寺组地球化学特征及意义:以云南省昭通市昭阳区锌厂沟剖面为例[J]. 沉积学报, 2021, 39(5): 1305-1319. [百度学术]
LIU J Q, HE L, HE P, et al. Geochemical characteristics and significance of the Qiongzhusi Formation on the eastern margin of the ancient Kangding-Yunnan Land: Taking the Xinchanggou section of Zhaoyang district, Zhaotong city, Yunnan province as an example[J]. Acta Sedimentologica Sinica, 2021, 9(5):1305-1319. [百度学术]
杨永祯, 郭岭, 方泽鑫, 等. 康滇古陆东缘筇竹寺组沉积物源的风化特征研究:以云南省楚雄市武定县乌龙村剖面为例[J/OL]. 沉积学报[2022-12-10]. doi: 10.14027/j.issn.1000-0550.2022.073. [百度学术]
YANG Y Z, GUO L, FANG Z X, et al. Weathering characteristics of sedimentary source area of Qiongzhusi Formation, eastern margin of ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China[J/OL]. [2022-12-10]Acta Sedimentologica Sinica.doi: 10.14027/j.issn.1000-0550.2022.073. [百度学术]
YANG F L, ZHOU X F, PENG Y X, et al. Evolution of Neoproterozoic basins within the Yangtze Craton and its significance for oil and gas exploration in South China: An overview[J]. Precambrian Research, 2020, 337:105563. [百度学术]
张克信, 何卫红, 徐亚东, 等. 论断代构造地层区划的原则与方法:以中国寒武纪构造地层区划为例[J]. 地球科学, 2020, 45(12): 4267-4290. [百度学术]
ZHANG K X, HE W H, XU Y D, et al. Principles and methods to division of tectonostratigraphic regions for geochronologic periods: Exemplified by Cambrian Period[J]. Earth Sceince, 2020, 45(12): 4267-4290. [百度学术]
张俊明, 李国祥, 周传明. 滇东早寒武世梅树村期浅色黏土岩层的地球化学特征和地质意义[J]. 岩石学报, 1997, 13(1): 100-110. [百度学术]
ZHANG J M, LI G X, ZHOU C M. Geochemistry of light colour clayrock layers from the Early Cambrian Meishucun Stage in Eastern Yunnan and their geological significance[J]. Acta Petrologica Sinica, 1997, 13(1): 100-110. [百度学术]
管树巍, 吴林, 任荣, 等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38(1): 9-22. [百度学术]
GUAN S W, WU L, REN R, et al. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Science, 2017, 38(1): 9-22. [百度学术]
陈良忠, 罗惠麟, 胡世学, 等. 云南东部早寒武世澄江动物群[M]. 昆明: 云南科技出版社, 2002. [百度学术]
云南省地质矿产局. 云南省区域地质志[M]. 北京: 地质出版社, 1990. [百度学术]
刘怀仁, 黄新兵. 康滇古陆东缘晚元古代—古生代层序地层[J]. 四川地质学报, 1996, 16(2): 115-119. [百度学术]
LIU H R, HUANG X B. Sequence stratigraphy from the Upper Proterozoic to the Paleozoic in the eastern margin of Kangdian old land[J]. Acta Geologica Sichuan, 1996, 16(2): 115-119. [百度学术]
彭晓霞. 上扬子西南缘寒武系沧浪铺组沉积地球化学特征与古环境重建[D]. 西安: 西北大学, 2022. [百度学术]
王刚, 王二七. 挤压造山带中的伸展构造及其成因:以滇中地区晚新生代构造为例[J]. 地震地质, 2005, 27(2): 188-199. [百度学术]
WANG G, WANG E Q. Extensional structures and their genesis in compressional orogenic belts: A case study of late Cenozoic tectonics in Central Yunnan[J]. Seismology and Geology, 2005, 27(2): 188-199. [百度学术]
赵方臣, 朱茂炎, 胡世学. 云南寒武纪早期澄江动物群古群落分析[J]. 中国科学(地球科学), 2010, 40(9): 1135-1153. [百度学术]
ZHAO F C, ZHU M Y, HU S X. Community structure and composition of the Cambrian Chengjiang biota[J]. Science China(Earth Science), 2010, 40(9), 1135-1153. [百度学术]
朱茂炎, 孙智新, 杨爱华, 等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 223-249. [百度学术]
ZHU M Y, SUN Z X, YANG A H, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy, 2021, 45(3): 223-249. [百度学术]
朱茂炎, 杨爱华, 袁金良, 等. 中国寒武纪综合地层和时间框架[J]. 中国科学(地球科学), 2019, 49(1): 26-65. [百度学术]
ZHU M Y, YANG A H, YUAN J L, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China(Earth Sciences), 2019, 62(1):25-60. [百度学术]
CHEN F Y, ZHANG Z F, BETTS M J, et al. First report on Guanshan Biota (Cambrian Stage 4) at the stratotype area of Wulongqing Formation in Malong County, Eastern Yunnan, China[J]. Geoscience Frontiers, 2019, 10(4): 1459-1476. [百度学术]
任玥, 时国, 乔丹, 等. 云南会泽寒武系第二统第四阶沧浪铺组三叶虫化石特征[J]. 江西科学, 2020, 38(1): 63-68. [百度学术]
REN Y, SHI G, QIAO D, et al. Trilobite fossils of the Canglangpu Formation in the Lower Cambrian of Huize, Yunnan Province and their geological significance[J]. Jiangxi Science, 2020, 38(1): 63-68. [百度学术]
刘璠. 滇东地区寒武系第二统软舌螺动物研究[D]. 西安: 西北大学, 2021. [百度学术]
方泽鑫. 滇东下寒武统筇竹寺组黑色页岩沉积环境及烃源岩特征[D]. 西安: 西北大学, 2020. [百度学术]
PATERSON G A, ZHAO X, JACKSON M, et al. Measuring, processing, and analyzing hysteresis data[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 1925-1945. [百度学术]
邵瑞琦, 周亚楠, 于亮, 等. 拉萨地块保吉地区晚侏罗世吐卡日组灰岩岩石磁学特征研究[J]. 地球物理学进展, 2019, 34(3): 928-935. [百度学术]
SHAO R Q, ZHOU Y N, YU L, et al. Study on the magnetic properties of limestone rocks in the late Jurassic Tukari formation in Baoji area of the Lhasa terrane[J]. Progress in Geophysics, 2019, 34(3): 928-935. [百度学术]
敖红, 邓成龙. 磁性矿物的磁学鉴别方法回顾[J]. 地球物理学进展, 2007, 22(2):432-442. [百度学术]
AO H, DENG C L. Review in the identification of magneticminerals[J]. Progress in Geophysics, 2007, 22(2): 432-442. [百度学术]
李波, 石显耀, 李学杰, 等. 西菲律宾海西部沉积物磁学特征及其环境意义[J]. 地质科技通报, 2016, 35(5): 34-41. [百度学术]
LI B, SHI X Y, LI X J, et al. Magnetic properties of sediments from the western west Philippine Sea and their environmental implications[J]. Bulletin of Geological Science and Technology, 2016, 35(5): 34-41. [百度学术]
STOCKHAUSEN H. Some new aspects for the modelling of isothermal remanent magnetization acquisition curves by cumulative log Gaussian functions[J]. Geophysical Research Letters, 1998, 25(12), 2217-2220. [百度学术]
KRUIVER P P, DEKKERS M J, HESLOP D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanentmagnetisation[J]. Earth and Planetary Science Letters, 2001, 189(3/4): 269-276. [百度学术]
HESLOP D, DEKKERS M J, KRUIVER P P, et al. Analysis of isothermal remanent magnetization acquisition curves using the expectation—maximization algorithm[J]. Geophys, 2002, 148(1), 58-64. [百度学术]
王保锋, 程鑫, 姜南, 等. 羌北地块晚志留世龙木措上组岩石磁学特征[J/OL]. 地质科技通报[2022-11-14]. doi: 10.19509/j.cnki.dzkq.2022.0169. [百度学术]
WANG B F, CHENG X, JIANG N, et al. Study on the magnetic properties of the Late Silurian Longmu Co Upper formation rocks from North Qiangtang Terrane[J/OL]. [2022-11-14]Bulletin of Geological Science and Technology.doi: 10.19509/j.cnki.dzkq.2022.0169. [百度学术]
JELINEK V. Characterization of the magnetic fabric of rocks[J]. Tectonophysics, 1981, 79(3/4): 63-67. [百度学术]
ZHU R X, LIU Q S, JACKSON M J. Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial (<130 ka)[J]. Earth and Planetary Science Letters, 2004, 221(1/2/3/4): 55-69. [百度学术]
LAGROIX F, BANERJEE S K. The regional and temporal significance of primary aeolian magnetic fabrics preserved in Alaskan Loess[J]. Earth and Planetary Science Letters, 2004, 225(3/4): 379-395. [百度学术]
ZHANG R, KRAVCHINSKY V A, ZHU R X, et al. Paleomonsoon route reconstruction along a W—E transect in the Chinese Loess Plateau using the anisotropy of magnetic susceptibility: Summer monsoon model[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 436-446. [百度学术]
GE J Y, GUO Z T, ZHAO D A, et al. Spatial variations in paleowind direction during the last glacial period in north China reconstructed from variations in the anisotropy of magnetic susceptibility of loess deposits[J]. Tectonophysics, 2014, 629:353-361. [百度学术]
LI L Y, CHANG H, PARES J M, et al. Cenozoic Uplift of Tanggula Range and Tuouohe Basin, Northern Tibet: Insights of the anisotropy of magnetic susceptibility[J]. Frontiers in Earth Sceince, 2022, 10:815315. [百度学术]
ROCHETTE P. Magnetic susceptibility of the rock matrix related to magnetic fabric studies[J]. Journal of Structural Geology, 1987, 9(8): 1015-1020. [百度学术]
CIFELLI F, MATTEI M, CHADIMA M, et al. The magnetic fabric in “undeformed clays”: AMS and neutron texture analyses from the Rif Chain (Morocco)[J]. Tectonophysics, 2009, 466(1/2): 79-88. [百度学术]
ROBERTS A P, CUI Y, VEROSUB K L. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems[J]. Journal of Geophysical Research(Solid Earth), 1995, 100(9): 17909-17924. [百度学术]
TAUXE L. Essentials of paleomagnetism[M]. California: University of California Press, 2010. [百度学术]
GARCÍA-LASANTA C, OLIVA-URCIA B, ROMÁN-BERDIEL T, et al. Evidence for the Permo-Triassic transtensional rifting in the Iberian Range (NE Spain) according to magnetic fabrics results[J]. Tectonophysics, 2015: 651-652. [百度学术]
PARÉS J M. How deformed are weakly deformed mudrocks? Insights from magnetic anisotropy[J]. Geological Society, 2004, 238:191-203. [百度学术]
牟传龙, 梁薇, 周恳恳, 等. 中上扬子地区早寒武世(纽芬兰世第二世)岩相古地理[J]. 沉积与特提斯地质, 2012, 32(3): 41-53. [百度学术]
MOU C L, LIANG W, ZHOU K K, et al. Sedimentary facies and palaeogeography of the middle-upper Yangtze area during the Early Cambrian (Terreneuvian-Series 2)[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(3): 41-53. [百度学术]
文舰, 彭军, 陈友莲, 等. 云南永善苏田剖面寒武系沧浪铺组层序地层与沉积特征[J]. 地层学杂志, 2020, 44(3): 268-276. [百度学术]
WEN J, PENG J, CHEN Y L, et al. Sequence stratigraphy and sedimentary characteristics of the Cambrian Canglangpu Formation in the Sutian section, Yongshan County, Yunnan Province[J]. Journal of Stratigraphy, 2020, 44(3): 268-276. [百度学术]
HOUNSLOW M W. Magnetic fabric characteristics of bioturbated wave-produced grain orientation in the Bridport-Yeovil Sands (Lower Jurassic) of Southern England[J]. Sedimentology, 1987, 34(1): 117-128. [百度学术]
BORRADAILE G J, JACKSON M. Anisotropy of magnetic susceptibility (AMS): Magnetic petrofabrics of deformed rocks[J]. Geological Society Special Publication, 2004, 238(1): 299-360. [百度学术]
BORRADAILE G J, JACKSON M. Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM)[J]. Journal of Structural Geology, 2010, 32(10): 1519-1551. [百度学术]
BIEDERMANN A R. Magnetic anisotropy in single crystals: A Review[J]. Geosciences, 2018, 8(8): 302-313. [百度学术]
冯增昭, 彭勇民, 金振奎, 等. 中国南方寒武纪岩相古地理[J]. 古地理学报, 2001, 3(1): 1-14. [百度学术]
FENG Z Z, PENG Y M, JIN Z K, et al. Lithofacies palaeogeography of the Cambrian in south China[J]. Journal of Palaeogeography, 2001, 3(1), 1-14. [百度学术]
张东阳. 滇东北会泽地区下寒武统筇竹寺组黑色岩系地球化学特征研究[D]. 昆明: 昆明理工大学, 2017. [百度学术]
李向东, 陈海燕. 滇中梅树村剖面筇竹寺组等深流沉积的发现及其意义[J]. 高校地质学报, 2019, 25(3): 412-422. [百度学术]
LI X D, CHEN H Y. Discovery of contourite and its significance in Qiongzhusi Formation of Meishucun Section, Central Yunnan Province, China[J]. Geological Journal of China Universities, 2019, 25(3): 412-422. [百度学术]
蒋源. 云南昭通—曲靖地区筇竹寺组页岩气储层研究及重点地段资源预测[D]. 昆明: 昆明理工大学, 2016. [百度学术]
0
浏览量
0
下载量
0
CSCD
相关文章
相关作者
相关机构